Меню

Вспомогательное оборудование подстанции

вспомогательное оборудование подстанции

вспомогательное оборудование подстанции

[ГОСТ Р 54835-2011/IEC/TR 61850-1:2003]

Тематики

  • substation secondary equipmen

Справочник технического переводчика. – Интент . 2009-2013 .

Смотреть что такое «вспомогательное оборудование подстанции» в других словарях:

оборудование — 3.1 оборудование (machine): Соединенные вместе друг с другом детали или устройства, одно из которых, по крайней мере, является подвижным, в том числе с приводными устройствами, элементами управления и питания и т.д., которые предназначены для… … Словарь-справочник терминов нормативно-технической документации

система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 24291-90: Электрическая часть электростанции и электрической сети. Термины и определения — Терминология ГОСТ 24291 90: Электрическая часть электростанции и электрической сети. Термины и определения оригинал документа: 4 (электрическая) подстанция; ПС Электроустановка, предназначенная для приема, преобразования и распределения… … Словарь-справочник терминов нормативно-технической документации

электрический — 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 55057-2012: Транспорт железнодорожный. Состав подвижной. Термины и определения — Терминология ГОСТ Р 55057 2012: Транспорт железнодорожный. Состав подвижной. Термины и определения оригинал документа: 22 аварийная крэш система: Устройство железнодорожного подвижного состава, предназначенное для предотвращения или снижения… … Словарь-справочник терминов нормативно-технической документации

зона — 3.11 зона: Пространство, содержащее логически сгруппированные элементы данных в МСП. Примечание Для МСП определяются семь зон. Источник: ГОСТ Р 52535.1 2006: Карты идентификационные. Машиносчитываемые дорожные документы. Часть 1. Машин … Словарь-справочник терминов нормативно-технической документации

фильтр — 3.4 фильтр (filter): Аппарат для разделения или удаления загрязнителей из сжатого воздуха или потока газа. Источник: ГОСТ Р ИСО 12500 1 2009: Фильтры сжатого воздуха. Методы испытаний. Часть 1. Масла в виде аэрозолей … Словарь-справочник терминов нормативно-технической документации

ГОСТ — В Викитеке есть тексты по теме ГОСТ … Википедия

Государственный стандарт — Титульная страница ГОСТ 14771 76 СССР Государственный стандарт основная категория стандартов в СССР, сегодня межгосударственный стандарт в СНГ. Принимается Межгосударственным советом по стандартизации, метрологии и сертификации (МГС). В… … Википедия

Межгосударственный стандарт — ГОСТ (Государственный стандарт) одна из основных категорий стандартов в СССР, сегодня межгосударственный стандарт в СНГ. Принимается Межгосударственным советом по стандартизации, метрологии и сертификации (МГС). В советские времена все ГОСТ… … Википедия

Источник

Электрическая часть электростанций — Вспомогательные устройства

Содержание материала

Вспомогательными устройствами на электрической станции, относящимися в основном к электрической части, являются: трансформаторно-масляное хозяйство, пневматическое хозяйство, электротехническая лаборатория и электротехнические мастерские.

Трансформаторно-масляное хозяйство (ТМХ).

В каждой энергосистеме или части ее организуется служба ТМХ. В системе имеется центральное трансформаторно-масляное и складское хозяйство (ДТМСХ), на каждой станции создается станционное хозяйство (СТМХ).
Объем и состав станционного ТМХ зависит от количества масла, залитого в трансформаторы и аппараты. Кроме трансформаторных масел, в ведении ТМХ находятся турбинные, машинные и смазочные масла.
ТМХ располагаются в отдельном несгораемом здании, обычно со стороны подъезда к станции для удобства разгрузки прибывающих на станцию железнодорожных цистерн с маслом. Между корпусами станции и зданием ТМХ, а также между стеной и наружными баками масла оставляется пожарный проезд шириной не менее 20 м. На ГЭС иногда допускается расположение масляного хозяйства трансформаторов в служебных помещениях, рядом с монтажной площадкой станции.
Масляное хозяйство турбинных масел обычно размещается под монтажной площадкой на уровне турбинного этажа здания гидростанции.
В составе СТМХ в общем случае предусматриваются: трансформаторная башня или крановый зал, помещение маслоочистительных аппаратов и насосов, помещение баков, регенерационная, помещение мойки мелкой тары, масло-химическая лаборатория, контора и кладовые.
Крановый зал в ЦТМХ имеет большое значение, так как в нем производятся ревизия и ремонт трансформаторов всех станций и подстанций системы. На отдельных станциях монтаж, ревизия и ремонт трансформаторов производятся обычно на монтажной площадке станции с помощью крана машинного зала. Только там, где трансформаторы не могут быть доставлены на монтажную площадку из-за большой разности уровней (монтажной площадки и площадки трансформаторов), например на подземных ГЭС, или из-за больших размеров трансформаторов 500—750 кВ, а также на крупных понижающих подстанциях сооружается отдельное здание с мостовым краном (трансформаторная башня, крановый зал) для монтажа и ремонта крупных трансформаторов.
Площадь кранового зала должна быть достаточной для расположения в нем бака самого крупного трансформатора, магнитопровода, вынутого из бака; для размещения вокруг бака радиаторов, расширителя, изоляторов и прочей арматуры, подготовленных для монтажа; для размещения аппаратов сушки трансформатора; при этом должны предусматриваться проходы, удобные для работы персонала.
Высота до крюка крана должна обеспечивать возможность вынимания магнитопровода самого крупного трансформатора или снятия крышки бака колокольного типа. Грузоподъемность крана выбирается по транспортной массе трансформатора либо по массе выемной или съемной части. При доставке трансформаторов специальным трейлером или транспортером предусматриваются ворота с обоих торцов здания для сквозного проезда транспортных средств. При небольшой мощности трансформаторов для их ремонта, а также для ремонта выключателей на подстанциях иногда ограничиваются открытыми ремонтными порталами с грузоподъемными устройствами.
Аппаратная масляного хозяйства — это основное помещение, где работает персонал. На стене, граничащей со смежным помещением масляных баков, монтируется коллектор маслопроводов напорных и сливных труб масел разного качества с размещением в один ряд всех вентилей управления. К этому коллектору стационарно подключаются масляные баки, масляные насосы и посредством гибких металлических рукавов — передвижные маслоочистительные аппараты: центрифуги (сепараторы), фильтр-прессы, вакуум-колонки и т. п. От аппаратной масляного хозяйства иногда прокладываются постоянные маслопроводы на монтажную площадку, к фронту установки трансформаторов и к баковым многообъемным выключателям ОРУ.
В помещении баков устанавливаются баки свежего, чистого, эксплуатационного, а также грязного масла. Число баков должно обеспечивать приемку свежего масла, очистку и осушку его в промежуточных баках, хранение чистого масла, слив эксплуатационного и грязного масла. Все баки цилиндрические с коническим дном, устанавливаются на некоторой высоте от пола помещения. Баки снабжаются маслоуказательными стеклами или поплавками сигнализации уровня масла. Баки чистого масла должны иметь воздухоосушительные фильтры с масляным затвором.
Вместимость баков выбирается из условий подготовки и хранения порции масла, необходимой для заливки самого крупного трансформатора. Баки свежего масла часто ставятся снаружи помещения, вместимость их согласуется с вместимостью железнодорожных цистерн, одновременно поступающих на станцию.
Регенерация (восстановление) отработанного и устаревшего масла производится только на крупных станциях, удаленных от ЦТМХ системы. В помещении находятся регенерационная установка, отстойники, фильтры, химические реагенты, отбеливающие средства, маслоочистительные аппараты, насосы и т. п.
Персонал маслохимической лаборатории производит анализ поступающего масла, следит за состоянием масла, залитого в трансформаторы и аппараты, ведет учет продвижения каждой партии масла на объекте, занося все данные в карту — паспорт этого масла, и определяет время и рецепт чистки, регенерации и т. п.
В маслохимической лаборатории находятся установка для испытания проб масла на пробой, химическое оборудование, препараты и реагенты для полных и частичных анализов масла согласно техническим условиям, приведенным в общесоюзном стандарте.
На крупных понижающих подстанциях организуется служба масляного хозяйства аналогично СТМХ, а на небольших — используют масляное хозяйство ближайшей станции или ЦТМСХ энергосистемы.

Пневматическое хозяйство.

Сжатый воздух давлением 2,5—4.0 МПа и выше применяется на ГЭС для зарядки масло-воздушных котлов системы регулирования турбин, давлением 0,7—0,9 МПа — для торможения агрегатов, для отжатая воды из камер рабочего колеса гидротурбин, для пневматического инструмента. Обычно компрессоры и воздухосборники (ресиверы) этого назначения устанавливаются в помещениях под монтажной площадкой машинного зала станции.
В электрической части ГЭС и ГРЭС сжатый воздух применяется для работы воздушных выключателей, для их приводов и для приводов управления другими аппаратами. Компрессоры с небольшой подачей (до 0,5 м8/мин) вместе с воздухосборниками устанавливаются непосредственно в ЗРУ. Для аппаратов ОРУ оборудование компрессоров размещается в специальной несгораемой постройке на территории подстанции.
Воздухосборники обычно устанавливаются снаружи, с теневой стороны здания компрессорной. Стены помещения должны быть оштукатурены, панели окрашиваются масляной краской, пол выполняется из метлахских плиток.
Устанавливается не менее двух компрессоров (один резервный) и несколько воздухосборников рабочего и повышенного давления, снабженных манометрами и предохранительными клапанами. Наименьшее давление сжатого воздуха должно на 10—15 % превышать номинальное давление в аппаратах. Установка оборудуется средствами автоматического управления, защиты и сигнализации при повреждениях и нарушениях работы. Все оборудование и детали должны быть доступны для разборки и чистки. Воздухопроводы от компрессорной выполняются из бесшовных стальных труб. По территории ОРУ они могут прокладываться в кабельных сооружениях.

Читайте также:  Измерители сопротивления 103 sub

Электротехническая лаборатория.

В лаборатории решаются следующие задачи: участие в приемосдаточных испытаниях основного и вспомогательного оборудования, снятие характеристик, измерение всех параметров (включая к. п. д.) для проверки соответствия их техническим условиям; наладка всех электротехнических устройств после монтажа, а также после очередного ремонта; испытание оборудования повышенным напряжением; наблюдение за надежной работой всех контрольно-измерительных систем на станции, градуировка приборов; специальные измерения, например, частоты вращения и вибраций; контроль и измерение сопротивления изоляции, измерение тангенса угла диэлектрических потерь, удельного сопротивления грунта, сопротивления системы
заземления, определение зазоров в машинах, измерение тяжения проводов, стрелы провеса проводов наружных установок и т. п.
Лаборатория снабжается парком испытательных трансформаторов, контрольно-измерительных приборов и устройств класса точности 0,2. Специальными измерительными заводами и фирмами выпускаются необходимые для разных целей комплекты портативных измерительных приборов, вмонтированных в чемоданы, удобные для переноски.

Электротехнические мастерские.

Крупный ремонт оборудования и аппаратов обычно производится центральными производственными ремонтными мастерскими энергосистемы и выездными бригадами этих мастерских. Местными пристанционными мастерскими производится ревизия и мелкий ремонт аппаратов и приборов станции. В помещении мастерских предусматриваются необходимые станки, такелажные средства и инструмент.
Мастерскую желательно располагать в первом этаже с удобным сообщением с монтажной площадкой станции. В помещении мастерской предусматривается однобалочный мостовой кран или тельфер и таль небольшой грузоподъемности. Рядом располагаются помещения инструментальной и кладовой.

Источник



Основное оборудование трансформаторных подстанций

Общие понятия

Трансформаторной подстанцией называется электрическая установка, которая предназначена для преобразо­вания энергии одного напряжения в энергию другого напряжения при неизменной частоте тока и для ее распределения. Оборудова­ние подстанции состоит из одного или нескольких трансформаторов, распределительных устройств первичного и вторичного напряжения, устройств управления, защиты и сигнализации.

Различают районные подстанции, которые снабжают электро­энергией крупные районы с промышленными, городскими и сельско­хозяйственными потребителями, и подстанции местного значения, которые питают отдельные предприятия или районы города. Под­станции местного значения понижают напряжение с 220, 110, 35, 10, 6 кВ до 10; 6, 0,4/0,23 кВ.

Подстанции, питающие отдельные предприятия и коммунальные нагрузки, обычно имеют первичное напряжение 10 — 6 кВ и вторичное 0,4/0,23 кВ.

По принципу обслу­живания подстанции подразделяют на сетевые, обслуживаемые персоналом энергосистемы, и абонентские, обслуживаемые персо­налом потребителя.

Количество трансформаторных подстанций (ТП) находится в прямой зависимости от размеров строительной площадки и нагрузки, приходящейся на подстанцию. При увеличении количества ТП уменьшаются расходы на уст­ройство низковольтной сети и увеличиваются расходы на оборудо­вание ТП.

Для выбора количества ТП составляют несколько вариан­тов расчета и выбирают вариант с наименьшими капитальными за­тратами, обеспечивающий бесперебойное питание ответственных потребителей. Для крупных сосредоточенных потребителей (карь­еры, компрессорные и насосные станции, производственные пред­приятия) обычно сооружают отдельные ТП.

Для равномерной рассредоточенной нагрузки, получающей энергию по сети 380/220 В, расстояние между подстанциями при наименьших затратах не пре­вышает 800 м. Подстанции с одним_трансформатором имеют меньшую стоимость и меньшую надежность питания по сравнению с двухрансформаторными подстанциями.

По степени надежности электроснабжения подразделяют все электроприемники на три категории. К первой категории отно­сятся потребители, перерыв в электроснабжении которых может повлечь за собой опасность для жизни людей, брак выпускаемой продукции, повреждение оборудования или длительное расстройство сложного технологического процесса; ко второй категории — по­требители, перерыв в электроснабжении которых связан с суще­ственным снижением выпуска продукции, простоем людей и механиз­мов; к третьей категории относятся все остальные нагрузки.

Для обеспечения надежности питания потребителей первой ка­тегории на подстанции устанавливают два трансформатора. Если мощность потребителей первой категории превышает 50% суммар­ной нагрузки, то мощность каждого трансформатора должна быть не меньше суммарной нагрузки.

Для выбора мощности трансформаторов необходимо знать установленную мощность РУС и коэффициент спроса КС. Установленную мощность находят суммированием номинальных мощностей прием­ников по группам (освещение, двигатели одного назначения), исключая резервные мощности.

Не все приемники в одной группе включаются одновременно, а силовые потребители загружаются полностью. Максимально возможную электрическую нагрузку данной группы потребителей определяют с помощью коэффициента спроса. Коэффициент спроса учитывает одновременность включения приёмников, значение загрузки, к. п. д. приемника и к. п. д. электросети и определяется по формуле:

где К — коэффициент одновременности, представляющий от­ношение максимального числа одновременно рабо­тающих приемников ко всему количеству приемников; КЗ — коэффициент загрузки, представляющий отношение по­требляемой мощности к номинальной мощности прием­ника; ηПР — к. п. д. электроприемника; ηС — к. п. д. сети.

Коэффициенты спроса для различных групп потребителей при­ведены в справочниках.

Расчетную активную мощность Ррасч, кВт, определяют суммированием произведений установленной мощности РУС и коэффициента спроса КСкаждой группы потребителей:

Кажущаяся мощность, кВА, по которой выбирают трансфор­маторы, определяется по формуле:

где Qрасч — реактивная мощность, кВАр

При одном трансформаторе на подстанции:

При двух трансформаторах:

Основное оборудование трансформаторных подстанций

Силовые трансформаторы предназначены для преобра­зования напряжения (без изменения частоты тока) до значения, удоб­ного для питания потребителей. На объектах транспортного строи­тельства наибольшее распространение имеют двухобмоточные трех­фазные трансформаторы с первичным напряжением 3, 6 или 10 кВ и вторичным 400/230 или 600 В для питания двигателей малой и средней мощности.

Трансформаторы характеризуются номинальной мощностью, первичным и вторичным напряжением, напряжением короткого замыкания и группой соединения.

Внутри бака силового трехфазного трансформатора (рисунок 13.1) закреплен трехстержневой сердечник.

На рисунке 13.1 обозначены: 1 — термометр; 2 и 4 — проходные изоляторы; 3 — переключатель для изменения коэффициен­та трансформации; 5 — маслоуказатель; 6 — расширитель; 7 — радиаторы; 8 — бак; 9 — сер­дечник; 10 — обмотка высшего напряжения; 11 — обмотка низшего напряжения

На каждом стержне концентрически расположены обмотки высокого и низкого напряжения, а их выводы присоеди­нены к проходным изоляторам. К баку, заполненному трансфор­маторным маслом, прикреплены радиаторы.

Трансформаторное масло служит для охлаждения обмоток трансформатора и сердечника и для изоляции обмоток между собой и стенками бака. К крышке бака через трубопровод присоединен расширитель. На расшири­теле установлен указатель уровня масла.

Для предотвращения несчастных случаев и крупных аварий при пробое изоляции и замыкании обмоток высокого и низкого напряжения при изолированной нейтрали устанавливают пробивной предохранитель, который присоединяют к заземленному корпусу

Для регулирования на­пряжения каждая фаза пер­вичной обмотки высокого на­пряжения имеет три вывода и переключатель 0, с по­мощью которого можно изме­нять число витков первичной обмотки (рисунок 13.2).

При включении трансфор­маторов на параллельную работу необходимо выполне­ние следующих условий: идентичности групп соединений и соотношения мощностей не более 1 : 3, равенства первичных напряжений и коэффи­циентов трансформации или различия последних не более чем на ±0,5%; различия на­пряжений короткого, замы­кания не более чем на ±10% от среднего арифметического значения напряжения корот­кого замыкания, включаемых на параллельную работу трансформаторов. Перед включением трансформаторов должна быть произведена их фазировка.

Высоковольтные выключатели пред­назначены для включения и отключения цепей напряже­нием выше 1000 В при рабочих режимах и автоматического отключения при коротких замы­каниях и недопустимых перегрузках.

Большинство выключателей заполняют трансформаторным мас­лом (масляные выключатели), у которых оно служит для изоляции токоведущих частей между собой и заземленным корпусом (много­объемные масляные выключатели) или только для гашения дуги (малообъемные масляные выключатели). У малообъемных масляных выключателей токоведущие части изолируют фарфоровыми изоля­торами.

Высоковольтные выключатели включаются ручными или электро­магнитными приводами. Выключатели выбирают по току и напря­жению и проверяют на возможность отключения наибольшего тока короткого замыкания.

Выключатели нагрузки предназначены только для включения и отключения токов, не превышающих номинальное значение, защита от коротких замыканий и перегрузок производит­ся предохранителями.

Читайте также:  Об уменьшении срока полезного использования ОС

Разрядники предназначены для защиты изоляции элек­троустановок от перенапряжений. После срабатывания и ликви­дации перенапряжения разрядник сразу же восстанавливает нор­мальную изоляцию сети по отношению к земле. Разрядник пред­ставляет собой элемент с ослабленной изоляцией, который при пере­напряжении пробивается, не повреждаясь, и тем самым предохра­няет от пробоя изоляцию электрических машин и аппаратов. Разрядники бывают трубчатые и вилитовые. Трубчатые разряд­ники устанавливают на опорах ЛЭП и присоединяют к каждой фазе линий.

Измерительные трансформаторы применяют в высоковольтных цепях переменного тока для питания измери­тельных приборов, реле. Применение измерительных трансформаторов позволяет изолировать измерительные приборы от це­пей высокого напряжения, расположить их на большом расстоянии от места измерения, использовать более простые, надежные и точ­ные приборы и обеспечить безопасность обслуживания.

Один из выводов вторичной обмотки измерительных трансформаторов зазем­ляют, чтобы защитить обслуживающий персонал и предотвратить повреждение приборов при пробое изоляции между первичной и вто­ричной обмотками трансформатора. Для питания вольтметров, параллельных обмо­ток счетчиков используют трансформаторы напряжения, для питания амперметров, последовательных обмоток счетчиков — транс­форматоры тока.

Трансформаторы напряжения применяют в установках выше 380 В. Они представляют собой однофазные или трехфазные трансфор­маторы с вторичным номинальным напряжением в большинстве слу­чаев 100 В. Сердечник трансформатора напряжения набирают из высококачественной электротехнической стали для повышения точности преобразования первичного напряжения во вторичное. Класс точности измерительного трансформатора показывает погрешность в процентах; трансформаторы напряжения имеют че­тыре класса точности: 0,2; 0,5; 1 и 3.

Номинальный коэффициент трансформации трансформатора на­пряжения указан на его щитке и представляет собой отношение первичного номинального напряжения к вторичному номинальному напряжению.

Для трансформатора напряжения с определенным коэффициен­том трансформации выпускают приборы с обмоткой, рассчитанной на 100 В.

Шкала такого прибора отградуирована в значениях первич­ного измеряемого напряжения в соответствии с коэффициентом транс­формации, что указывается на шкале прибора. При необходимости переградуируют прибор со шкалой на 100 В перемножением пока­заний шкалы на коэффициент трансформации трансформатора на­пряжения, к которому будет подключен прибор.

Обмотки трансформатора напряжения обычно соединены звез­дой, приборы к вторичной обмотке подключают параллельно на ли­нейное или фазное напряжение.

Трансформаторы тока (рисунок 13.2) применяют для измерения тока в цепях установок напряжением выше 380 В и многоамперных цепях уста­новок напряжением ниже 380 В. Первичную обмотку подключают последовательно в измеряемую цепь, токовые обмотки приборов включают во вторичную обмотку тоже последовательно.

Трансформаторы тока выпускают пяти классов точности: 0,2; 0,5; 1; 3; 5.

Особенностью трансформато­ров тока является отсутствие зависимости первичного тока от вторичного, вторичный же ток пропорционален первичному току.

При замене прибора без отключения цепи необходимо замкнуть накоротко перемычками на специальных выводах вторичную об­мотку трансформатора тока или прибор (показаны штриховой линией) и после этого отсоединить прибор. Если вторичную обмотку транс­форматора тока не используют, то она должна быть закорочена.

В зависимости от характера работ электроснабжение объекта осуществляется от стационарных или передвижных ТП. Стацио­нарные ТП бывают открытого или закрытого типа.

Открытые ТП могут быть пристроены к производственному по­мещению. Трансформатор присоединяют к источнику питания ка­белем или к воздушной линии через разъединители и высоковольтные предохранители. Выводы низкого напряжения соединяют шинами с распределительным устройством низкого напряжения, располо­женным внутри помещения, через проходные изоляторы. Потреби­тели получают питание из распределительного устройства с помощью кабеля.

Наиболее совершенными являются комплектные трансформатор­ные подстанции (КТП) для установки в закрытых помещениях и для наружной установки. КТП имеют полностью смонтированное обору­дование в металлических ячейках. Для включения КТП в работу необходимо ее установить и подключить к питающей линии и к ли­ниям низкого напряжения. КТП обеспечивает максимальную без­опасность при производстве ремонтных работ; доступ к оборудова­нию возможен в том случае, если снято напряжение.

Передвижные подстанции предназначены для питания переме­щающихся потребителей, их используют для питания земснарядов, экскаваторов, электроснабжения карьеров. Передвижные подстан­ции устанавливают на полозьях или перевозят на автомашинах, прицепах. Они должны быть компактны и удобны при обслужива­нии. В металлической ячейке передвижной ТП установлены трансфор­матор, разъединитель, предохранители, проходные изоляторы вво­дов и низковольтный распределительный щит. Ввод может быть воздушным или кабельным.

13.3 Правила эксплуатации и безопасности при обслуживании транс­форматорных подстанций

Перед включением в эксплуатацию трансформаторов мощностью до

630 кВА включительно после монтажа или капитального ре­монта должны быть произведены: химический анализ и испытание на электрическую прочность масла из баков и маслонаполненных вводов; измерения сопротивлений изоляции обмоток, ярмовых балок и доступных стяжных болтов; осмотр цепей первичных и вторичных соединений, измерение сопротивления изоляции и испытание повышенным напряжением; проверка измерительных приборов; испытание релейной защиты; проверка работы приводов выключателей и разъединителей; фазировка трансформатора; осмотр трансформатора после его включения в горячем состоя­нии с проверкой плотности швов, состояния прокладок, фланцевых соединений.

Все маслонаполненные трансформаторы, оборудованные расши­рителем, должны иметь термометры для измерения температуры масла. При наличии под трансформаторами маслоприемных уст­ройств маслоотводы и дренаж должны содержаться в исправном состоянии.

В зависимости от графика нагрузки в целях снижения потерь в трансформаторах для каждой установки должно быть определено количество одновременно работающих трансформаторов.

Трансформаторные установки оснащают противопожарными сред­ствами в соответствии с требованиями пожарной охраны. Осмотр основных трансформаторов без их отключения в установках с дежур­ным персоналом должен производиться один раз в сутки, остальных трансформаторов — один раз в 5 суток. Осмотр трансформаторов в уста­новках без дежурного персонала производится не реже одного раза в месяц и трансформаторных пунктов — не реже одного раза в 6 месяцев.

При эксплуатации ТП необходимо выполнять общие Правила электробезопасности и пожарной безопасности.

Источник

Оборудование трансформаторных подстанций, как устроены подстанции

Сложная иерархия современных электрических сетей включает в себя огромное количество различного электротехнического оборудования, среди которого трансформаторные подстанции выполняют роль звена, связующего и перераспределяющего электроэнергию. Они располагаются около или внутри населенных пунктов и обеспечивают комфортные условия для проживания людей.

В сельской местности еще можно встретить конструкции старых столбовых подстанций, работающих на открытом воздухе, которые принимают по высокой стороне воздушной линии 10 или 6 кВ и отдают 0,4 подключенным потребителям.

Столбовая трансформаторная подстанция 10/0,4 кв

Внутри населенных пунктах с многоэтажными зданиями в целях безопасности чаще применяются кабельные линии, скрытые в земле, а трансформаторное оборудование располагается внутри специальных построек, закрытых на замки от несанкционированного проникновения.

Здание подобной трансформаторной подстанции, преобразующей напряжение 10 кВ в 0,4 показано на фотографии.

Трнасформаторная подстанция 10/0,4 кВ

Внешнее отличие габаритов показанных подстанций, преобразующих напряжения одинаковых величин, свидетельствует о том, что они оперируют разными мощностями.

Подобные трансформаторные подстанции (ТП) получают электроэнергию по высоковольтным линиям электропередач 10 кВ (или 6) от удаленных распределительных устройств.

Фотография силового трансформатора, расположенного на ОРУ-110 и осуществляющего преобразование электроэнергии 110 кВ в 10, передаваемое по ЛЭП на ПС-10, показана на очередной фотографии.

Силовой трансформатор на подстанции 110/10 кВ

Этот трансформатор имеет уже большие габариты и оперирует с мощностями до 10 мегаватт, располагается на открытой, огороженной территории, которая конструкцией оборудования четко разграничена на две стороны:

высшего напряжения 110;

Сторона 110 кВ воздушной ЛЭП соединяется с другой подстанцией, которая имеет еще большие габариты и преобразовывает огромные энергетические потоки.

Размеры только вводной опоры единичной воздушной ЛЭП позволяют визуально оценить значительность потоков электроэнергии, пропускаемых через нее.

ввод вл-330 кВ на подстанции 330/110/10

Приведенные фотографии свидетельствуют, что трансформаторные подстанции в энергетике перерабатывают энергию электричества различных напряжений и мощностей, монтируются разнообразными конструкциями, но имеют общие черты.

Состав оборудования трансформаторной подстанции

Каждая ПС создается под конкретные условия эксплуатации с расположением:

на открытом воздухе — открытые распределительные устройства (ОРУ);

внутри закрытых помещений — ЗРУ;

в металлических шкафах, встроенных в специальные комплекты — КРУ.

По типу конфигурации электрической сети трансформаторные ПС могут выполняться:

тупиковыми, когда они запитаны по одной либо двум радиально подключенным ЛЭП, которые не питают другие ПС;

ответвительными — присоединяются к одной (иногда двум), проходящим ЛЭП с помощью ответвлений. Проходящие линии питают другие подстанции;

проходными — подключены за счет захода ЛЭП с двухсторонним питанием методом «вреза»;

узловыми — присоединяются по принципу создания узла за счет не менее чем трех линий.

Читайте также:  Настройка автоматической установки драйверов

Типы подстанций по конфигурации сети

Конфигурация сети электроснабжения накладывает условия на рабочие характеристики подстанции, включая настройку защит для обеспечения безопасной работы.

Основные элементы ПС

В состав оборудования любой подстанции входят:

силовой трансформатор, который непосредственно осуществляет преобразование электроэнергии для ее дальнейшего распределения;

шины, обеспечивающие подвод приходящего напряжения и отвод нагрузок;

силовые коммутационные аппараты с тоководами, позволяющие перераспределять электроэнергию;

системы защит, автоматики, управления, сигнализации, измерения;

вводные и вспомогательные устройства.

Он является основным преобразующим элементом электроэнергии и выполняется трехфазным исполнением. В его конструкцию входят:

корпус, выполненный в форме герметичного бака, заполненного маслом;

обмотки стороны низкого напряжения (НН);

обмотки вводов высокого напряжения (ВН);

переключатель регулировочных отводов у обмоток;

вспомогательные устройства и системы.

Конструкция силового трансформатора

Более подробно устройство силового трансформатора и автотрансформатора изложено в другой статье.

Чтобы трансформатор работал к нему надо подвести питающее и отвести преобразованное напряжение. Эта задача возложена на токоведущие части, которые называют шинами и ошиновкой. Они должны надежно передавать электрическую энергию, обладая минимальными потерями напряжения.

Для этого их создают из материалов с улучшенными токопроводящими свойствами и повышенным поперечным сечением. В зависимости от размеров ПС шины могут располагаться на открытом воздухе или внутри закрытого сооружения.

Шины и ошиновка электрически разделяются между собой положением силового выключателя. Причем ошиновка без каких-либо коммутационных аппаратов напрямую подключена к вводам трансформатора. Ее конструкция не должна создавать механических напряжений в фарфоровых и всех остальных деталях вводов.

Для ошиновки используют кабели или пластины, которые монтируют на медные шпильки трансформаторных вводов через наконечники или переходники.

У подстанций, защищенных от воздействия атмосферных осадков, шины обычно делают цельными алюминиевыми или реже медными полосами. На открытом воздухе для них чаще используют многожильные не закрытые слоем изоляции провода повышенного сечения и прочности.

Конструкция шин ОРУ-110 кВ

Однако, в последнее время наметился переход на системы шин, устанавливаемые жестко. Это позволяет экономить площадь на ОРУ, металл токоведущих частей и бетон.

Установка жетской системы шин на ОРУ-110 кВ

Такие конструкции применяются на новых строящихся подстанциях. За их основы взяты образцы, успешно работающие несколько десятилетий в странах Запада на оборудовании 110, 330 и 500 кВ.

Для расположения шин применяется определенная конфигурация, которая может использовать:

Под термином «система шин» подразумевается комплект силовых элементов, подключающих все присоединения на распределительном устройстве. На подстанциях с двумя трансформаторами одного напряжения создаются две системы шин, каждая из которых питается от своего источника.

Протяженная система шин при большом количестве присоединений может разделяться на отдельные участки, которые называются секциями.

Силовые коммутационные аппараты

Трансформаторные подстанции при эксплуатации необходимо подключать под напряжение или выводить из работы для профилактического обслуживания или в случае возникновения аварийных ситуаций и неисправностей. С этой целью используются коммутационные аппараты, которые создаются различными конструкциями и могут:

1. отключать аварийные токи максимально возможных величин;

2. коммутировать только рабочие нагрузки;

3. обеспечивать разрыв видимого участка электрической схемы за счет переключения только при снятом с оборудования напряжении.

Коммутационные аппараты, способные отключать аварийные ситуации, работают в автоматическом режиме и называются «автоматическими выключателями». Они создаются с различными возможностями коммутации нагрузок за счет конструктивных особенностей.

По принципу использования запасенной энергии, заложенной в работу исполнительного механизма, их подразделяют на:

По способам гашения электрической дуги, возникающей при отключениях, они классифицируются на:

Для управления исключительно рабочими режимами, характеризующимися только номинальными параметрами сети, создаются «выключатели нагрузки». Мощность их контактной системы и скорость работы позволяют успешно переключаться при обычном состоянии схемы. Но, ими нельзя оперировать для ликвидации коротких замыканий.

При разрыве электрической цепи под нагрузкой создается электрическая дуга, которая ликвидируется конструкцией выключателя. В обесточенной схеме для отделения определенного участка от напряжения используют более простые устройства:

Разъединителями оперируют, как правило, вручную при снятом напряжении. На подстанциях 330 кВ и выше управление разъединителями осуществляется электродвигателями. Это объясняется большими габаритами и механическими усилиями, которые сложно преодолеть вручную.

При включении разъединителя участок его цепи собирается в электрическую схему, а при отключении — выводится.

Отделители создаются для автоматического разделения напряжения с защищаемого участка при создании на нем бестоковой паузы удаленным выключателем. Более подробно работа отделителя изложена в этой статье.

Взаимное расположение коммутационных аппаратов и шин

Любая трансформаторная подстанция создается по определенной электрической схеме, предполагающей обеспечение надежной работы, простоты управления в сочетании с минимумом затрат на ввод и эксплуатацию. С этой целью к трансформаторному устройству разными способами подключаются отходящие ЛЭП.

Наиболее простая схема предполагает подключение к ТП посредством силового выключателя Q одной секции шин, от которой отходят все присоединения. Для обеспечения условий безопасного ремонта оборудования выключатели со всех сторон отделяются разъединителями.

Схема РУ с одной секцией сборных шин

Если на ПС много присоединений, когда в схеме используются 2 силовых трансформатора, то может применяться секционирование за счет использования дополнительного выключателя, который постоянно находится в работе, а при возникновении неисправности на одной из секций разрывает цепь, оставляя в работе ту секцию, где нет поломки.

Схема РУ с двумя секциями сборных шин

Использование в такой схеме обходной системы шин, образованной за счет подключения дополнительных выключателей и небольшой корректировки электрических цепей, позволяет переводить любое присоединение на питание от обходного выключателя, безопасно выполнять ремонт и обслуживание собственного.

Схема РУ с двумя секциями сборных шин и обходным устройством

Большими удобствами обслуживания и повышенной надежностью обладают распределительные устройства, собранные на основе двух рабочих систем шин с обходной, когда они дополнительно разделены на секции.

В исходном состоянии все отход ящие ЛЭП получают электроэнергию от обоих трансформаторов. Для этого шинные и секционные выключатели питают секции шин, а присоединения равномерно распределены по ним через свои коммутационные устройства.

Схема РУ с двумя секционированными системами шин и обходным выключателем

Обходная СШ каждой секции вводится под напряжение только для случая перевода через нее питания присоединения, выключатель которого выведен в ремонт.

При возникновении короткого замыкания на одной из секций она отключается защитами со всех сторон, а все остальные с подключенными к ним ЛЭП остаются в работе. За счет такой схемы при КЗ на ОРУ обесточивается минимальное количество потребителей от всех работающих.

Приведенные схемы показаны для примера. Их существует большое разнообразие, которое позволяет наиболее оптимально эксплуатировать оборудование трансформаторной подстанции.

Защиты, автоматика, системы управления

Работа оборудования трансформаторной подстанции происходит в автоматическом режиме под дистанционным наблюдением оперативного персонала. Чтобы предотвратить серьезные повреждения внутри сложной дорогостоящей системы применяются автоматические защитные устройства.

Они имеют чувствительные датчики, которые воспринимают начало возникновения аварийных процессов и, обрабатывая полученную информацию, передают ее на защиты.

Такими датчиками могут работать механические приборы, реагирующие на:

возникновение вспышки света;

резкое возрастание давления внутри закрытой ячейки;

начало газообразования внутри жидкостей или другие признаки.

Однако, основная нагрузка по определению начала аварийных режимов возложена на электрические устройства — измерительные трансформаторы тока и трансформаторы напряжения.

Они с высокой точностью моделируют электрические процессы, происходящие в первичной схеме силового оборудования и передают их в органы сравнения, которые определяют момент возникновения неисправностей.

Полученный сигнал от них воспринимают логические блоки, обрабатывающие поступившую информацию для передачи исполнительной команды на отключающие устройства конкретных автоматических выключателей.

У малогабаритных трансформаторных подстанций, размещенных внутри крытых сооружениях, защиты могут располагаться в отдельной ячейке или шкафу.

На подстанциях, преобразующих напряжение 110 кВ и выше, для размещения релейных вторичных цепей требуется отдельное здание с большим количеством панелей. На них монтируют системы управления, автоматики и защиты:

К этим устройствам подключаются системы сигнализации, работающие в местном и дистанционном режиме для передачи оперативному персоналу достоверных сведений о происходящих коммутациях в электрической сети. Наиболее важная информация о положении ответственных элементов оборудования передаются по каналам телесигнализации.

Используемые многие десятилетия релейные защиты постепенно вытесняются микропроцессорными малогабаритными модулями, облегчающими эксплуатацию.

Однако, их массовое использование сдерживается высокой стоимостью и отсутствием точных международных стандартов для всех производителей. Ведь при поломке отдельного специфичного блока пользователю приходится обращаться к конкретному заводу для замены возникшей неисправности.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник