Меню

Стоимость закупки оборудования и сырья в России



Водородные установки

Водород является ценным химическим реагентом. С целью повышения экономической эффективности производства его получают и концентрируют из топливных, остаточных и сбросных газов. Он практически не встречается в природе в чистом виде, но потребление данного газа неуклонно растет. Для его производства необходимо использовать специальные водородные установки. Мы предлагаем качественное оборудование. Каждая водородная установка отличается компактностью, надежностью системы и обеспечивает полную автоматизацию процесса.

Особенности водородного оборудования

Водородные установки «Грасис» позволяют извлекать водород из технологических потоков. Они используют новейшие достижения мембранной и адсорбционной технологий. Подобное водородное оборудование открывает новые возможности для химических, нефтехимических производств и предприятий нефтепереработки. Каждая установка водородная соответствует новому техническому регламенту. В связи с грядущим переходом к новым классам топлива с пониженным содержанием серы и ароматических углеводородов к качеству водорода, используемого в процессах гидроочистки и процессе изомеризации, предъявляют всё более высокие требования. Роль водородных систем также возрастает. Неуклонное повышение требований к чистоте и полноте извлечения газа происходит и в химической и нефтехимической отраслях. Соответственно, повышенное внимание уделяется и качеству водородного оборудования.

В этой связи компания «Грасис» постоянно работает над совершенствованием водородных технологий, чтобы предложить каждому клиенту установку, в полной мере удовлетворяющую потребности в водороде и повышающую эффективность работы водородного производства предприятия.

Использование установок «Грасис» для производства водорода удобно, эффективно и выгодно с экономической точки зрения, так как данная водородная установка совмещает в себе отличные технические и эксплуатационные характеристики, компактные размеры и автоматизацию всего процесса получения водорода.Получаемый на установках «Грасис» водород может быть возвращен в технологический процесс или отправлен на сжижение.

Мембранные водородные установки

Установки на базе мембранной технологии для извлечения водорода из газовой смеси.

Источник

Производство водорода: технологии и перспективы в России

Производство водорода: обзор 4-х технологий + какое необходимо оборудование + перспективы производства и прибыльность.

proizvodstvo-vodoroda

Водород – один из многих элементов, которые в чистом виде практически не встречаются в природе, но активно используются в промышленности и в быту. Чаще всего в гидрогене нуждается пищевая и химическая промышленность – его используют в изготовлении пластмасс, аммиака, метанола и мыла.

struktura-primenenija-vodoroda

Структура применения водорода в России

В быту гидроген могут использовать для обогрева помещений, как заменитель природного газа, а также как компонент биотоплива.

В лабораторных условиях водород начали получать ещё в XVII-ом веке. Для этого использовали, к примеру, цинк или соляную кислоту. В XXI-ом веке для промышленного производства такая методика слишком дорогая и неудобная.

Благо, наука не стоит на месте, и сейчас доступны несколько новых способов получения гидрогена. В том числе, они могут использоваться и на скромных мощностях. Отличие в процессах будет заключаться только в химическом и физическом воздействии на исходное сырьё.

За счет этого производство водорода стало доступно не только на крупных промышленных комплексах, но и в небольшом количестве для нужд населения. О том, как именно это происходит, пойдет речь в данной статье.

4 способа получения водорода

Существует более 100 различных методов добычи гидрогена – как теоретических, так и освоенных в промышленных масштабах. В зависимости от выбранного вами вида получения ресурса, производство водорода потребует различного оборудования, сырья и других ресурсов.

Рассмотрим 5 самых распространенных способов производства водорода.

Способ №1. Паровая конверсия

Более 50% всего водорода получается путём паровой конверсии воды и метана. При этом три основных составляющих (природный газ, водяной пар и оксиген) смешиваются в определённых пропорциях.

Таким образом, часть природного газа сгорает вместе с кислородом, тем самым поддерживая необходимую температуру для продолжения химической реакции. Метан, не выгоревший во время реакции конверсии, реагирует с водяным паром, образуя оксид углерода (то есть сажу) и непосредственно гидроген.

Простота и относительная лёгкость делает производство водорода путём паровой конверсии наиболее дешёвым из всех доступных.

struktura-primenenija-vodoroda-shema

Способ №2. Разделение метана на углерод и водород

Благодаря дешевизне метана, а также простому способу его получения, такой тип добычи водорода проще всего. Однако высокие температуры и потенциальная пожароопасность требуют дополнительных мер безопасности. К тому же, оборудование для полного процесса крекинга не из дешёвых.

Способ №3. Электролиз воды

Ещё один вид добычи гидрогена – электролиз воды. Это второй по распространённости метод добычи водорода, обеспечивающий достаточно высокую чистоту конечного продукта. Сопутствующим «бонусом» в этом технологическом процессе становится кислород, не менее важный элемент.

jelektroliz-vody

Для такого способа производства требуются значительные запасы воды. Тем не менее он совсем не требователен к её качеству – для электролиза можно использовать промышленную, дождевую или даже сточную воду.

Способ №4. Пиролиз

«Топливом» для этого могут служить отходы сельского хозяйства и пищевых производств:

  • Птичий помёт и другие побочные продукты животноводства.
  • Отходы рыбных, соко- и мясокомбинатов.
  • Некоторые виды технических культур, специально выращенных для получения биомассы.

При переработке всех этих биоотходов при помощи специальных бактерий образуется синтез-газ, в основном состоящий из двуокиси карбона и метана. Продуктом их переработки и становится гидроген.

Читайте также:  Оборудование для производства пивоварения

piroliz

Такой способ производства набирает всё большую популярность ввиду того, что, помимо гидрогена, из биомассы добываются этилен и ацетилен. Также ценным сырьём являются и сами биоотходы, которые широко используются в сельском хозяйстве для производства удобрений.

Стоимость закупки оборудования и сырья в России

К примеру, оборудование для пиролиза производит не только водород, но и этин, этен и другие органические соединения. По желанию, любой из этих ресурсов можно реализовать, как отдельный продукт, либо использовать в качестве сырья в дальнейшей добыче гидрогена.

Стоимость оборудования варьируется в зависимости от предполагаемого объема производства. Например, небольшие «комнатные» генераторы можно приобрести по цене до 10000 долларов. Такого вполне может хватить для использования в хозяйственных нуждах – например, для обогрева помещений.

zakupka-oborudovanija

Далее идёт категория «потяжелее»: генератор электролиза, потребляющий 30 л воды в час, будет производить 30 куб. метров H и 15 куб. метров O₂ за час. Стоимость такого оборудования составляет около 110 тыс. долларов США. Чистота получаемого на выходе гидрогена оценивается в 99,6-99,8%.

generator-jelektroliza

Такой тип генераторов использует наиболее доступный ресурс для производства – воду и электричество. Как уже говорилось ранее, вода может быть абсолютно любого качества. К примеру, можно использовать дождевую воду, речную, либо морскую.

При покупке генератора стоит учесть, что некоторые из них работают только с дистиллированной, то есть технической водой!

Оборудование для добычи гидрогена из биосырья и полезных ископаемых посредством пиролиза, обойдётся гораздо дороже. К примеру, для производства 300 куб. метров H из биотоплива предприниматель должен быть готов выложить 400-800 тыс. долларов.

oborudovanie-dlja-dobychi-gidrogena

Тем не менее не стоит забывать, что при пиролизе добывается большое количество побочных продуктов, а чистота водорода достигает отметки в 99.999%. Сырьём для такого типа добычи могут выступать практически любые органические соединения. При этом срок окупаемости такой установки составляет до 5 лет.

Самый простой способ получения водорода.

Как получить водород для двигателя на воде?

Производство водорода – российские перспективы

Несмотря на то, что некоторые автомобильные и энергетические компании собирались использовать водород на российском рынке ещё в 2014, широкого распространения такой вид топлива пока что не получил. Несмотря на это, у нас имеются в свободной продаже автомобили с гибридным и водородным двигателями.

Но автомобили – не единственная сфера применения этого газа. Водород используется при сварке тугоплавких металлов, в пищевом производстве, а в промышленности при помощи гидрогена восстанавливают некоторые металлы из их оксидов.

Себестоимость добычи одного килограмма – 1-5 долл. США, а 1 м3 H на российском рынке стоит, в среднем, 1300 рублей. И это только с учётом «чистого» гидрогена, без побочных продуктов производства! А ведь, к примеру, стоимость 40 л ацетилена составляет 2,5-4 тыс. рублей.

Как видите, производство водорода – это выгодный бизнес, масштаб реализации которого можно «вписать» в имеющийся у вас бюджет. А что можно сказать о перспективах дела?

В будущем планируется значительное снижение себестоимости гидрогена, а также широкое распространение автомобилей с водородным двигателем, как альтернативы «классическому» топливу.

Вдобавок ко всему, при добыче газа можно использовать солнечную энергию, что ещё больше удешевляет себестоимость гидрогена. Всё это делает производство водорода перспективным и выгодным вложением.

Источник

Генераторы водорода электролизного типа

генератор водорода

генератор водорода

ПРЕИМУЩЕСТВА Генераторов водорода ERREDUE S.p.A.

Мы не передаем Вашу персональную информацию третьим лицам. Нажимая кнопку, Вы даете согласие на обработку персональных данных.

Схема генератора водорода

Источником водорода и кислорода в электролизных установках является деминерализованная и глубоко очищенная вода. От качества отчистки воды зависит срок службы всей системы генерации водорода. Соли, которые содержатся в неочищенной технической воде, очень быстро разрушают электроды в электролизере Э-1. Поэтому подготовке воды требуется уделить особое внимание, применив обратноосмотические мембраны.

Подготовленная и очищенная вода подмешивается в щелочной электролит, находящийся в системе электролизёра Э-1, где под воздействием постоянного тока расщепляется на две части водорода и одну часть кислорода. Под воздействием тока в электролизере образуется своего рода пена, содержащая пузырьки газа, со стороны анода – кислород, со стороны катода – водород. Далее пена, содержащая пузырьки газа, попадает в скруббер СЭ-1, 2, где пузырьки водорода и кислорода лопаются, высвобождая газ и происходит очищение от электролита на коалесцентном фильтре.

Далее газ попадает в теплообменник Т-3, 4, где происходит его охлаждение до температуры

5 °C и последующее отделение остаточного содержания влаги в конденсаторе С-1,2. Сконденсированный электролит и электролит из скрубберов, проходя через теплообменники Т-1,2, охлаждается и снова подает в электролизер с помощью насоса ЦН-1.

Очищенный от капельной влаги водород имеет название – «сырой» из-за остаточного содержания влаги и содержит порядка 0,1-0,5% кислорода. Полученный газ кислород может быть использован, но часто он сбрасывается на свечу.

Сырой водород поступает в реактор катализатор РК-1. Данный реактор содержанит палладиевый катализатор, под воздействием которого кислород вступает в реакцию с водородом, образуя воду. В результате реакции практически весь кислород расходуется на образования воды, и его остаточное содержание в водороде составляет от 1 до 5 ppm.

Читайте также:  Электромонтажник — вакансии в Москве

Очищенный от кислорода водород с большим содержанием влаги подается на адсорбционный осушитель, где происходит отделение влаги до точки росы -70 °C и водород может быть направлен потребителю.

Источник

Как сделать генератор водорода в домашних условиях

Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев–энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения генератора водорода для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

  1. Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.
  2. Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
  3. Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
  4. Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
  5. Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

Источник

Установка производства водорода

Назначение

Установка производства водорода предназначена для обеспечения техническим водородом вновь вводимых установок:

  1. изомеризации,
  2. гидроочистки,
  3. гидрокрекинга,
  4. каталитического риформинга.

Строительство установки производства водорода позволит:

Установка производства водорода

  • ликвидировать недостающую потребность в водороде на НПЗ
  • производить водород высокой чистоты (не менее 99,5 % об.), что сокращает объём газа в последующих схемах потребления водорода;
  • улучшить экологические условия на территории предприятия за счёт применения в качестве топлива обессеренного газа с блока КЦА.

Установка производства водорода

Методы производства водорода

  • паровая конверсия метана и природного газа;
  • газификация угля;
  • электролиз воды;
  • пиролиз;
  • частичное окисление;
  • биотехнологии.

Сырье и продукты

На российских НПЗ наиболее распространенным методом получения водорода является паровая конверсия углеводородов (СУГ, нафты, природного газа).

Продуктами являются чистый водород с концентрацией >99% об., а также отдувочный газ, который чаще всего используется в качестве топлива для печей.

Катализаторы

Наиболее часто используемыми в промышленности катализаторами для процесса паровой конверсии являются катализаторы на основе никеля, однако в ряде специфических процессов допускается использование благородных металлов платиновой группы.

Технологическая схема

В состав установки производства водорода входят следующие блоки и узлы:

Принципиальная схема установки производства водорода методом паровой конверсии

  • блок подготовки и очистки сырья;
  • блок предриформинга;
  • блок парового риформинга;
  • блок конверсии и охлаждения конвертированного газа;
  • блок очистки водородсодержащего газа по технологии КЦА;
  • блок утилизации тепла продуктовых потоков и дымовых газов.

Принципиальная схема установки производства водорода методом паровой конверсии 1 – печь риформинга; 2 – реактор гидрообессеривания; 3 – адсорберы; 4 – реактор предриформинга; 5 – реактор конверсии СО; 6 – блок короткоцикловой адсорбции (КЦА)

Очистка сырья

Природный газ поступает в подогреватель, нагревается до температуры 40 °С. Для гидрирования сернистых соединений, содержащихся в сырье, до серо­водорода, требуется небольшое количество водорода.

С этой целью часть водоро­да, полученного на установке, подается в качестве рециркуляционного водорода в поток сырья. Смесь сырья и рециркулирующего водорода, последова­тельно поступая в теплообменники, нагревается до температуры 380 °С, необходимой для предварительной очистки сырья.

Подогретая газосырьевая смесь поступает в реактор гидрообессеривания, где происходит гидрирование соединений серы до H2S. Газосырьевая смесь из реактора последо­вательно проходит через адсорберы, где происходит улавливание хлоридов (НСl) и сернистых соединений (H2S). В каждом из этих реакторов имеется три слоя катализатора:

  • модифицирован­ный оксид алюминия для удаления НСl,
  • оксид цинка,
  • слой специального катализатора для эффективного и глубо­кого удаления H2S.

Предриформинг

Очищенная газосырьевая смесь смешивается с перегретым паром высокого давления. Соотношение расходов регулируется с поддержанием заданного мольного соотношения водяного пара и углерода. Величина значения этого соотношения зависит от типа сырья, подаваемого на установку.

Далее парогазовая смесь нагревается до температуры реакции 475 °С – 500 °С, в змеевике подогрева сырья предриформинга, расположенном в конвек­ционной секции печи парового риформинга и направляется в реактор пред­риформинга.

Предриформинг служит для превращения тяжелых углеводородов, содер­жащихся в сырье, в метан, а также для частичного проведения реакций рифор­минга, при этом эффективность процесса повышается.

Читайте также:  Какие записи должны быть в удостоверении

В зависимости от типа перерабатываемого сырья, может наблюдаться уве­личение или снижение общей температуры по реактору. Так при переработке бен­зинов увеличивается общая температура по реактору, за счет преобладания про­текания реакций с экзотермическим эффектом, а при переработке природного газа температура по реактору падает, за счет протекания реакций с эндотермическим эффектом.

Риформинг

Парогазовая смесь нагревается до температуры 650 °С в змеевике по­догрева сырья риформинга, расположенном в конвекционной секции печи парового риформинга, и затем поступает в коллектор, расположенный в радиантной секции печи парового риформинга.

В радиантной секции печи парового риформинга смесь сырья и пара посту­пает в катализаторные трубы, находящиеся в радиантной секции печи парового риформинга Н-1, проходит сверху вниз катализаторные трубы. В результате реак­ции, протекающей на катализаторе, загруженном в катализаторные трубы, полу­чается равновесная смесь, состоящая из Н2, СО, СO2, СН4 и Н2O.

Для предотвращения образования кокса и отложения его на катализаторе технологический пар подается в избытке, превышая стехиометрическое количест­во, требуемого на реакцию.

Полученный конвертированный газ (парогазопродуктовая смесь) выходит из печи парового риформинга при температуре 888 °С и далее направляется в те­плообменник. В теплообменнике происходит охлаждение питательной воды до температуры 320-343 °С, регенерированное тепло используется для генериро­вания насыщенного пара высокого давления.

Общий тепловой эффект реакций парового риформинга является в сильной степени эндотермическим, поэтому для достижения требуемой степени конверсии необходим подвод тепла.

Конструкция печи парового риформинга

Печь имеет сложную конструкцию, разработанную с уче­том технологических требований процесса с целью обеспечения безопасной экс­плуатации и хорошими технико-экономическими показателями. Для обеспечения расчетной степени конверсии без перегрева внешней поверхности поддерживает­ся необходимая температура газа в катализаторных трубах. Благодаря небольшо­му диаметру труб увеличивается площадь теплообменной поверхности и улучша­ется перемешивание газа в слое катализатора. В результате печи риформинга ра­ботают при максимальных давлениях и температурах.

По конструкции печь состоит из двух одинаковых радиантных камер, рабо­тающих параллельно, и расположенной над ними общей конвекционной камеры. Процесс паровой конверсии метана осуществляется в реакционных трубах при температуре 780-888 °С за счет внешнего обогрева.

Конверсия окиси углерода и охлаждение синтез-газа

Водородсодержащий газ после парового риформинга и охлаждения поступает в реактор высокотемпе­ратурной конверсии, где избыточный пар превращает большую часть СО в С02 и Н2 при прохождении через слой катализатора.

Синтез-газ, подвергнутый конверсии, охлаждается, отдавая тепло потокам системы выработки водяного пара. Далее частично охлажденный синтез-газ поступает в воздушный, а затем на доохлаждение в водяной холодильник, где охлаждается до температуры 35 °С и поступает в сепаратор для разделения смеси на неочищенный водород и технологический конденсат.

Технологический конденсат смешивается с химочищенной водой, посту­пающей из сетей завода и направляется в деаэратор, а неочищенный водород подается в блок короткоцикловой адсорбции.

Короткоцикловая адсорбция водородсодержащего газа

Поток неочищен­ного водородсодержащего газа поступает в блок короткоцикловой адсорбции (КЦА), где происходит удаление примесей в процессе циклической адсорбции. Для выполнения заданной степени концентрирования водорода и удаления при­месей в процессе используются многочисленные адсорбционные слои. Принятая схема блока позволяет извлечь водород с концентрацией 99,5 % (об.) из кон­вертированного газа, а сбросной газ направляется в качестве топлива в реакторную печь.

Блок короткоцикловой адсорбции (КЦА)

Блок короткоцикловой адсорбции (КЦА)

В блоке КЦА происходит очистка конвертированного водородсодержащего газа от примесей метана, окислов углерода путем адсорбции загрязнений на ад­сорбенте при высоком давлении и десорбции при низком давлении.

Блок утилизации тепла дымовых газов

В блоке утилизации тепла дымовых газов и продуктовых потоков произво­дится водяной пар высокого давления за счет охлаждения дымовых газов и про­дуктовых потоков. Одновременно с этим предусмотрено использование тепла дымовых газов для нагрева питательной воды, перегрева производимого водяного пара и подогрева воздуха, подаваемого к горелкам печи.

Материальный баланс

Наименование продукта Измерение Сутки
един. итого %
Входы
Сырьевой газ т 276,00 22,30
Расход пара ВД в предриформинг т 633,60 51,20
Расход пара ВД в риформинг т 327,90 26,50
Сумма сырья т 1 237,50 100,00
Выходы
Водород с установки т 89,70
Расход отдувочного газа с блока КЦА на печь т 605,10
Расход технологического конденсата т 542,70
Сумма продуктов т 1 237,50

Достоинства и недостатки

Недостатки

  • Высокие выбросы дымовых газов в атмосферу
  • Высокие капитальные затраты
  • Высокая стоимость перегретого водяного пара

Достоинства

  • Наиболее проработанный и распространенный вид производства водорода в нефтехимической промышленности
  • Относительно низкие температуры процесса
  • Вариативность проекта установки в зависимости от требований заказчика

Существующие установки

Спрос на водород растет в связи с переходом на потребление более чистых и легких нефтяных топлив, в то время как нефтяное сырье становится все тяжелее. В связи с этим трудно представить современный НПЗ без установки производства водорода. УПВ может отсутствовать только в составе НПЗ, работающих по профилю первичной переработки нефти. Стоит отметить, что для производств, обладающих развитой архитектурой вторичных процессов, ресурсов одной УПВ может быть недостаточно.

Источник