Меню

Пневматическое оборудование виды характеристики применение

Пневматическое оборудование: виды, характеристики, применение

Пневматическое оборудование применяется в промышленности, производстве, строительстве и других сферах. Это широкий спектр устройств, решающих разные задачи.

Пневмооборудование работает за счет использования сжатого воздуха. Рынок предлагает широкий выбор пневматики разного назначения, от пневмо-цилиндров до блоков подготовки воздуха.

Пневмо-цилиндры и пневмораспределители

Один из главных элементов пневмосистемы – это пневматические цилиндры. Различают два типа оборудования – одностороннего и двустороннего действия.

Пневматические цилиндры применяются в разных сферах и процессах:

  • машиностроение;
  • приборостроение;
  • обработка металла;
  • литейно-сварочное производство;
  • розлив продуктов питания и пр.

По сути, пневмо-цилиндр – это двигатель, обеспечивающий ход поршня.

Для управления потоками сжатого воздуха в пневмосистеме применяют пневматические распределители. При выборе пневмораспределителя нужно учитывать его пропускную способность, размеры присоединительной резьбы, тип управления и другие характеристики.

Блоки подготовки воздуха

Любая пневматическая система нуждается в подаче чистого воздуха, в неочищенном виде он несет угрозу работоспособности оборудования. В его состав могут входить пары, пыль, примеси и т.д. Попадая внутрь системы, подобные загрязнения наносят вред ее элементам. Проблему решают блоки подготовки воздуха, которые устанавливаются за компрессором. Подготовка может включать в себя:

  • очистку от примесей и пыли;
  • осушение;
  • регулировку давления;
  • отделение масла (например, в автомобильных системах);
  • подогрев и др.

Функции модулей зависят от конкретной модели, например, есть блоки, обеспечивающие разделение воздушного потока на несколько контуров. В состав пневмосистемы могут входить разные устройства подготовки сжатого воздуха, соответствующие степени фильтрации и другим характеристикам.

Соединительные элементы

При сборке пневматического оборудования используют специальные соединительные детали, обеспечивающие надежность всей системы. Это фитинги, быстроразъемные соединения и пр. С перечнем элементов, как и с видами пневмосистем, можно ознакомиться на сайте компании «Алпром Групп» https://alpromgroup.ru/catalog/pnevmaticheskoe_oborudovanie/, специализирующейся на поставках промышленного оборудования. При необходимости обращайтесь к специалистам, они помогут сделать выбор.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Источник

Часть шестая. Пневмопривод.

6.1. Основные виды пневмодвигателей.Структура пневмопривода

Пневматический привод (пневмопривод) — совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством энергии сжатого воздуха. Обязательными элементами пневмопривода являются компрессор (генератор пневматической энергии) и пневмодвигатель.

Пневмопривод, подобно гидроприводу, представляет собой своего рода «пневматическую вставку» между приводным двигателем и нагрузкой (машиной или механизмом) и выполняет те же функции, что и механическая передача (редуктор, ремённая передача, кривошипно-шатунный механизм и т. д.).

Основное назначение пневмопривода, как и механической передачи, — преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.).

В общих чертах, передача энергии в пневмоприводе происходит следующим образом:

1.Приводной двигатель передаёт вращающий момент на вал компрессора, который сообщает энергию рабочему газу.

2.Рабочий газ после специальной подготовки по пневмолиниям через регулирующую аппаратуру поступает в пневмодвигатель, где пневматическая энергия преобразуется в механическую.

После этого рабочий газ выбрасывается в окружающую среду, в отличие от гидропривода, в котором рабочая жидкость по гидролиниям возвращается либо в гидробак, либо непосредственно к насосу.

В зависимости от характера движения выходного звена пневмодвигателя (вала пневмомотора или штока пневмоцилиндра), и соответственно, характера движения рабочего органа пневмопривод может быть вращательным или поступательным. Пневмоприводы с поступательным движением получили наибольшее распространение в технике.

По характеру воздействия на рабочий орган пневмоприводы с поступательным движением бывают:

— двухпозиционные , перемещающие рабочий орган между двумя крайними положениями;

-многопозиционные , перемещающие рабочий орган в различные положения.

По принципу действия пневматические приводы с поступательным движением бывают:

-одностороннего действия , возврат привода в исходное положение осуществляется механической пружиной;

— двухстороннего действия , перемещающие рабочий орган привода осуществляется сжатым воздухом.

По конструктивному исполнению пневмоприводы с поступательным движением делятся на:

— поршневые , представляющие собой цилиндр, в котором под воздействием сжатого воздуха либо пружины перемещается поршень (возможны два варианта исполнения: в односторонних поршневых пневмоприводах рабочий ход осуществляется за счёт сжатого воздуха, а холостой за счёт пружины; в двухсторонних — и рабочий, и холостой ходы осуществляются за счёт сжатого воздуха);

— мембранные , представляющие собой герметичную камеру, разделённую мембраной на две полости; в данном случае цилиндр соединён с жёстким центром мембраны, на всю площадь которой и производит действие сжатый воздух (также, как и поршневые, выполняются в двух видах — одно- либо двухстороннем).

Сильфонные применяются реже. Практически всегда одностороннего действия: усилие возврата может создаваться как упругостью самого сильфона, так и с использованием дополнительной пружины.

В особых случаях (когда требуется повышенное быстродействие) применяют специальный тип пневмоприводов — вибрационный пневмопривод релейного типа.

Одним из применений пневматических приводов является использование их в качестве силовых приводов на пневматических тренажерах

6.2. Типовая схема пневмопривода.Принцип действия пневматических машин

Многие пневматические машины имеют свои конструктивные аналоги среди объёмных гидравлических машин. В частности, широко применяются аксиально-поршневые пневмомоторы и компрессоры, шестерённые и пластинчатые пневмомоторы, пневмоцилиндры.

Воздух в пневмосистему поступает через воздухозаборник

Рис. 4.11.Типовая схема пневмопривода: 1 — воздухозаборник; 2 — фильтр; 3 — компрессор; 4 — теплообменник (холодильник); 5 — влагоотделитель; 6 — воздухосборник (ресивер); 7 — предохранительный клапан; 8- Дроссель; 9 — маслораспылитель; 10 — редукционный клапан; 11 — дроссель; 12 — распределитель; 13 пневмомотор; М — манометр.

Фильтр осуществляет очистку воздуха в целях предупреждения повреждения элементов привода и уменьшения их износа.

Компрессор осуществляет сжатие воздуха.Поскольку, согласно закону Шарля, сжатый в компрессоре воздух имеет высокую температуру, то перед подачей воздуха потребителям (как правило, пневмодвигателям) воздух охлаждают в теплообменнике (в холодильнике).

Чтобы предотвратить обледенение пневмодвигателей вследствие расширения в них воздуха, а также для уменьшения корозии деталей, в пневмосистеме устанавливают влагоотделитель.

Воздухосборник служит для создания запаса сжатого воздуха, а также для сглаживания пульсаций давления в пневмосистеме. Эти пульсации обусловлены принципом работы объёмных компрессоров (например, поршневых), подающих воздух в систему порциями.

В маслораспылителе в сжатый воздух добавляется смазка, благодаря чему уменьшается трение между подвижными деталями пневмопривода и предотвращает их заклинивание.

В пневмоприводе обязательно устанавливается редукционный клапан, обеспечивающий подачу к пневмодвигателям сжатого воздуха при постоянном давлении.

Распределитель управляет движением выходных звеньев пневмодвигателя.

В пневмодвигателе (пневмомоторе или пневмоцилиндре) энергия сжатого воздуха преобразуется в механическую энергию.

— в отличие от гидропривода — отсутствие необходимости возвращать рабочее тело (воздух) назад к компрессору;

— меньший вес рабочего тела по сравнению с гидроприводом (актуально для ракетостроения);

— меньший вес исполнительных устройств по сравнению с электрическими;

— возможность упростить систему за счет использования в качестве источника энергии баллона со сжатым газом, такие системы иногда используют вместо пиропатронов, есть системы, где давление в баллоне достигает 500 МПа;

Читайте также:  Как работать с европейскими и американскими поставщиками

— простота и экономичность, обусловленные дешевизной рабочего газа;

— быстрота срабатывания и большие частоты вращения пневмомоторов (до нескольких десятков тысяч оборотов в минуту);

— пожаробезопасность и нейтральность рабочей среды, обеспечивающая возможность применения пневмопривода в шахтах и на химических производствах;

— в сравнении с гидроприводом — способность передавать пневматическую энергию на большие расстояния (до нескольких километров), что позволяет использовать пневмопривод в качестве магистрального в шахтах и на рудниках;

— в отличие от гидропривода, пневмопривод менее чувствителен к изменению температуры окружающей среды вследствие меньшей зависимости КПД от утечек рабочей среды (рабочего газа), поэтому изменение зазоров между деталями пневмооборудования и вязкости рабочей среды не оказывают серьёзного влияния на рабочие параметры пневмопривода; это делает пневмопривод удобным для использования в горячих цехах металлургических предприятий.

— нагревание и охлаждение рабочего газа в процессе сжатия в компрессорах и расширения в пневмомоторах; этот недостаток обусловлен законами термодинамики, и приводит к следующим проблемам:

— возможность обмерзания пневмосистем;

— конденсация водяных паров из рабочего газа, и в связи с этим необходимость его осушения;

— высокая стоимость пневматической энергии по сравнению с электрической (примерно в 3-4 раза), что важно, например, при использовании пневмопривода в шахтах;

— ещё более низкий КПД, чем у гидропривода;

— низкие точность срабатывания и плавность хода;

— возможность взрывного разрыва трубопроводов или производственного травматизма, из-за чего в промышленном пневмоприводе применяются небольшие давления рабочего газа (обычно давление в пневмосистемах не превышает 1 МПа, хотя известны пневмосистемы с рабочим давлением до 7 МПа — например, на атомных электростанциях), и, как следствие, усилия на рабочих органах значительно ме́ньшие в сравнении с гидроприводом). Там, где такой проблемы нет (на ракетах и самолетах) или размеры систем небольшие, давления могут достигать 20 МПа и даже выше.

— для регулирования величины поворота штока привода необходимо использование дорогостоящих устройств — позиционеров.

Пневмодвигатель- (от греч. pnéuma — дуновение, воздух), пневматический двигатель, пневмомотор — энергосиловая машина, преобразующая энергию сжатого воздуха в механическую работу.

Рис.4.12. Поворотный пневмоцилиндр.

По принципу действия обычно различают объёмные и турбинные пневмодвигатели.
По направлению движения — линейные (поршневые, баллонные, мембранные и другие) и поворотные (поршневые и лопастные).

В объёмных пневмодвигателях механическая работа совершается в результате расширения сжатого воздуха в цилиндрах поршневой машины, в турбинных — в результате воздействия потока воздуха на лопатки турбины (в первом случае используется потенциальная энергия сжатого воздуха, во втором — кинетическая энергия).
Наибольшее распространение получили объёмные пневмодвигатели (поршневые, ротационные и камерные (баллонные)).

Пневмодвигатели применяются для привода различных инструментов (дрелей, гайковёртов, отбойных молотков, шлифовальных головок), обеспечивая безопасность работы во взрывоопасных местах (со скоплением газа, угольной пыли), в среде с повышенным содержанием влаги.

Пневмомоторы — это пневмодвигатели с вращательным движением выходного звена, т. е. вала. Их применяют очень широко в приводах ручных сверлильных, шлифовальных машин, резьбонарезных головок, гайковертов. Различают пластинчатые (шиберные), шестеренные, аксиально-поршневые, радиально-поршневые и турбинные пневмомоторы с частотой вращения до 100 000 об/мин. Принцип действия этих пневмодвигателей (кроме турбинных) отличается от принципа действия одноименных с ними гидродвигателей тем, что расширение поступающего к ним сжатого воздуха вызывает вращение ротора, шестерен или движение поршней, которое преобразуется во вращение выходного звена. В турбинных пневмомоторах рабочее колесо с лопатками вращается под действием струи сжатого воздуха.

Поворотные пневмодвигатели предназначены для изменения положения рабочих органов ведомых механизмов на ограниченный угол. В зависимости от конструкции рабочей камеры различают поршневые и шиберные (лопастные) пневмодвигатели.

Типовая схема пневмопривода с поршневым цилиндром в качестве пневмодвигателя. Запорный вентиль предназначен для отключения привода от цехового или заводского трубопровода сжатого воздуха. В фильтре-влагоотделителе твердые частицы и влага отделяются от сжатого воздуха. Редукционный пневмоклапан снижает давление воздуха, поступающего из трубопровода, до необходимого уровня и поддерживает заданное давление. В маслораспылителе воздух насыщается мельчайшими частицами тонко распыленного масла, необходимого для смазывания поверхностей трения деталей пневмоцилиндра. Затем сжатый воздух поступает в пневмораспределитель — устройство, которое поочередно соединяет одну из полостей цилиндра с воздухопроводом, а другую — с атмосферой. Отработавший воздух выходит в атмосферу через глушитель 6, снижающий уровень шума, возникающего при выхлопе.

Для пневмопривода с мембранным пневмоцилиндром не нужен маслораспылитель, в схемах привода с пневмомоторами ротационного типа нет пневмораспределителей и маслораспылителей.

Рис. 4.14. Поворотные пневмодвигатели

Поршневой поворотный пневмодвигатель с реечной передачей (рис. 4.14, а) выполняют на базе передачи «шестерня — рейка». Шестерня 3 устанавливается на выходном валу 4, входит в зацепление со штоком-рей­кой 2, который жестко связан с поршнями 1 двух разнонаправленных цилиндров одностороннего действия.

При подаче сжатого воздуха в рабочую полость одного из пневмоцилиндров поршни вместе со штоком-рейкой совершают прямолинейное движение, которое посредством реечной передачи преобразуется во вра­щательное (в пределах одного оборота) движение вала. Вал связан с объектом, который необходимо повернуть на некоторый угол (например, с захватным устройством промышленного робота).

Очевидно, что поршневые пневмодвигатели можно выполнить таким образом, чтобы в конце рабочего хода происходило демпфирование, а поршни были снабжены магнитными вставками с целью обеспечения возмож­ности бесконтактного опроса их положения. В некоторых конструкциях предусматривается также регулирова­ние угла поворота.

Максимальный крутящий момент, развиваемый поршневыми поворотными пневмодвигателями, кака правило не превышает 150 Н-м (при диаметре поршней 100 мм).

Пластинчатый (шиберный) поворотный пневмодвигатель (рис. 4.14, б) устроен таким образом, что сжатый воздух воз­действует на жестко закрепленную на выходном валу 2 пластину 1 (шибер), расположенную внутри цилиндри­ческой расточки 3 в корпусе 4. Чтобы предотвратить перетекание воздуха из одной рабочей полости двигателя в другую пластину выполняют с резиновым либо пластмассовым покрытием. Угол поворота шибера зависит от размеров корпусного ограничителя 5 и в стандартных конструкциях составляет 90, 180 или 270 градусов. Для установки произвольного угла поворота такие пневмодвигатели снабжают внешними передвижными упо­рами. Они развивают крутящий момент до 250 Н-м. На принципиальных пневматических схемах поршневые и пластинчатые (шиберные) пневмодвигатели обозначаются оди­наковыми символами (рис. 4.15).

Рис. 4.15. Условное графическое обозначение поворотных пневмодвигателей: а — общее; б — с демпфированием в конце хода

Поскольку останов вращающейся массы без демпфирования или при наличии перегрузок создает опас­ность повреждения шестерни или лопасти, то, выбирая подходящий поворотный двигатель, очень важно пра­вильно учесть моменты инерции приводимых во вращательное движение технологических объектов. Значения их должны быть меньше указываемых в промышленных каталогах предельно допустимых значений для выб­ранного типоразмера пневмодвигателя.

Читайте также:  Знаки безопасности Предупреждающие знаки

Источник



Система пневматическая

Определение

Пневматическая система 1) 2) — комплекс устройств, резервуаров и трубопроводов, обеспечивающих производство, обработку, хранение, транспортирование и распределение сжатого воздуха и использующих его в качестве рабочего тела. 3)

Назначение

Это совокупность устройств, предназначенных для приведения в движение механизмов посредством энергии сжатого воздуха.

Конструкция

Элементами пневматической системы являются:

Примеры Изображение
Цилиндр одностороннего действия
Цилиндр двухстороннего действия 4)

Принцип действия

Приводной двигатель передает вращающий момент на вал компрессора, который сообщает энергию воздуху. После специальной подготовки воздух по воздушным трубам через регулирующую аппаратуру поступает в пневмодвигатель (пневмоцилиндр), где пневматическая энергия преобразуется в механическую. После этого воздух выбрасывается в окружающую среду (в отличие от гидропривода, в котором рабочая жидкость возвращается в гидробак или непосредственно к насосу). В зону обработки подготовленный воздух подается через систему клапанов и сопла.


Преимущества

Результатом любой утечки из пневматической системы, использующей воздух, будет тот же атмосферный воздух.

Атмосферный воздух всегда доступен на Земле.

Пневматические системы обычно имеют долгие сроки службы и требуют меньшего обслуживания, чем гидравлика.

Сжатый газ можно долго хранить в баллонах, позволяя использовать пневматику без электроэнергии.

Меньшая пожароопасность по сравнению с гидравликой на масле.

Пневматические машины из-за лучшей сжимаемости воздуха лучше защищены от перегрузок, чем гидравлика.

Пневматический механизм не требует дополнительного отвода. Отработанный воздух можно выпустить в атмосферу. Компрессор тоже может брать воздух непосредственно из атмосферы.

Пневматические машины легко разработать на базе обычных цилиндров и поршней.

Пневматические машины легко изготовить, поскольку пневматика обычно не требует деталей высокой точности.

Пневматическая система легче, чем гидравлика, при таких же давлениях.

Удельная мощность, передаваемая по одинаковым трубам, у пневматики выше, чем у гидросистем, а потери меньше.

У пневмоприводов выше скорость, чем у гидравлических.

Различия гидравлической и пневматической систем

Наглядно различия гидравлической и пневматической систем, а также их сфер применения показаны в следующих англоязычных видеоматериалах:

Применение

Пневматическая система применяется в таких отраслях промышленности как машиностроение, автомобилестроение, авиастроение и д.р. для переключения механизмов управления, привода узлов, открытия/закрытия перегородок и т.д., подачи воздуха, усиления результата выхода от прилагаемых действий.

Пневматическое оружие — разновидность стрелкового оружия, в котором снаряд вылетает под воздействием газа, находящегося под давлением. Существуют разные типы пневматического оружия. Например, в пружинно-поршневой пневматике сжатый воздух для метания пули образуется непосредственно в момент выстрела за счет движения внутри цилиндра массивного поршня, разгоняемого разжимающейся пружиной. 5)

Пневматическая подвеска автомобиля — разновидность подвески, при помощи которой имеется возможность регулировки клиренса (высоты кузова относительно дорожного полотна). В пневматической подвеске в качестве упругих элементов применяются пневмоупоры на каждом колесе. Она не является отдельным видом подвески автомобиля, а может основываться на конструкциях уже имеющихся подвесок. 6)

Пневматическое испытание может использоваться для испытания герметичности напорных трубопроводов.

Источник

Пневматические тормоза — принцип работы и устройство

Современный коммерческий транспорт оборудуется пневматическими тормозными системами. Принцип действия пневматических систем основан на применении энергии сжатого воздуха. Использовать воздух в качестве рабочего газа – отличное техническое решение. Это основная особенность данного вида тормозных систем и главное отличие от других, применяемых на практике. Пневматические тормозные системы укомплектованы множеством элементов управления и исполнения. Сложные по устройству, они используют общий принцип действия и имеют схематичное сходство.

Общий принцип действия тормозной пневмосистемы.

Упрощенно принцип действия можно описать так. воздушный насос – компрессор который имеет привод от двигателя накачивает в систему воздух из атмосферы. Благодаря регулятору давления, в системе создается и поддерживается предусмотренное характеристиками давление воздуха. Запас воздуха, сжатого компрессором, накапливается в специальных баллонах – ресиверах, крепящихся к раме транспортного средства. При надавливании педали тормоза водителем, воздух из ресиверов по трубкам и шлангам заполняет тормозные камеры. Своими штоками камеры приводят в действие механизмы тормозных колодок. Тормозные колодки передают энергию сжатого воздуха тормозным барабанам (дискам) колес. Движение транспорта замедляется. При отпускании водителем педали тормоза, воздух из тормозных камер возвращается в атмосферу. Механические детали системы с помощью встроенных пружин принимают исходное положение. Машина вновь набирает скорость.

Описание основных составных частей тормозной пневмосистемы.

Тормозная пневмосистема грузового автомобиля включает в себя:

  • рабочую тормозную систему,
  • стояночную тормозную систему,
  • антиблокировочную систему,
  • систему контроля и сигнализации.

Если грузовик оборудован прицепом, в общую схему добавляется тормозная система прицепа.

Описание основных рабочих элементов тормозной пневмосистемы.

  1. Компрессор. Воздушный насос. накачивает воздух в пневмостистему.
  2. Регулятор давления. Поддерживает в системе заданное рабочее давление и ограничивает поступление избытка воздуха.
  3. Осушитель воздуха. Задерживает влагу и другие примеси во избежание попадания их в механизмы системы.
  4. Четырехконтурный защитный клапан. Распределяет воздух по независимым контурам, и предотвращает утечку воздуха в случае обрыва одного из них.
  5. Ресиверы контуров. Специальные баллоны для накопления запаса сжатого воздуха.
  6. Ножной тормозной кран. Предназначен для управления рабочей тормозной системой.
  7. Тормозные камеры. преобразуют давление воздуха в механический процесс торможения.
  8. Ручной тормозной кран. Обеспечивает управление стояночной тормозной системой.
  9. Энергоаккумуляторы. Выполняют роль исполнительных механизмов и затормаживают автомобиль на время стоянки, а также в движении, когда давление в пневмосистеме упадет ниже допустимого.
  10. Детали антиблокировочной системы. Контролируют процесс равномерного торможения колесами.
  11. Манометр. Прибор на панели перед водителем с показаниями давления в системе.
  12. Контрольный, аварийный сигнализаторы. Индикаторные лампы на панели.

Общая схема работы тормозной пневмосистемы.

При запуске двигателя одновременно включается в работу компрессор. Он забирает атмосферный воздухи подает его в систему до момента достижения рабочего давления. Давление в системе определяет и ограничивает регулятор давления. Избыток воздуха направляется через выпускной клапан обратно в атмосферу. После регулятора давления воздух прогоняется через осушитель воздуха. Это устройство необходимо для фильтрации различных примесей и удержания паров атмосферной влаги. Сухой воздух обеспечивает безаварийную работу системы, особенно в морозное время. В большинстве систем регулятор давления и осушитель воздуха объединены в общий узел, оснащенный небольшим отдельным ресивером. Ресивер помогает осушителю выполнять функцию регенерации.

После осушителя воздух распределяется четырехконтурным защитным клапаном:

  • в два независимых контура рабочей тормозной системы, оборудованных раздельными ресиверами;
  • в контур стояночной и аварийной систем, оснащенный самостоятельным ресивером (через этот контур также происходит питание системы торможения прицепа);
  • в контур питания дополнительных потребителей воздуха (пневмоподвески и других).
    Кроме разделения потока воздуха клапан обеспечивает:
  • последовательное заполнение контуров сжатым воздухом.
  • при падении в каком-либо давления ниже допустимого – герметичность в остальных.
Читайте также:  Используемое оборудование поваром для приготовления блюд

Водитель осуществляет управление главным тормозным краном через педаль тормоза. Через полости тормозного крана воздух под давлением нагнетается в тормозные камеры передних колес, через управляющие элементы – тормозные камеры задних колес. Камеры штоками воздействуют на механизмы разведения (сжатия) тормозных колодок. Автомобиль тормозит.

В контуре стояночной и аварийной тормозных систем воздух из ресивера подается на ручной тормозной кран, который управляет подачей воздуха в энергоаккумуляторы, которые устанавливаются как правило на задние колеса. Посредствам ручного тормозного крана сбрасывается давление из такого аккумулятора. В результате, пружина воздействует на испонительные механизмы. Она принудительно давит на шток тормозной камеры, обеспечивая безопасную постановку грузового автомобиля на стоянку. Энергоаккумуляторы помогают избежать аварии во время движения. Когда давление системы упадет ниже допустимого, они тормозят машину.

Еще из ресивера контура стояночной и аварийной тормозных систем подается питание на кран управления тормозами прицепа. Пневматические системы автомобиля и прицепа соеденяются с помощью питающих соединительных головок. Управляющие сигналы в систему торможения прицепа параллельно поступают от тормозных систем автомобиля: рабочей, стояночной, аварийной.

При соединении тормозной системы прицепа с основной тормозной системой грузовика подключаются отдельно:

  • питающая магистраль исполнительных механизмов,
  • управляющая магистраль.

Если на прицепе стоят тормозные камеры, оснащенные энергоаккумуляторами, дополнительно собирается цепь управления секциями энергоаккумуляторов. По питающей магистрали сжатый воздух, минуя тормозной кран прицепа, наполняет ресивер прицепа. По управляющей магистрали пневмосигнал подается в цепь управления тормозным краном прицепа. В зависимости от расположения осей, прицепы оснащаются одним или двумя регуляторами тормозных сил. Эти устройства позволяют корректировать выходной сигнал с тормозного крана, исходя из загрузки прицепа. Отрегулированный сигнал поступает в антиблокировочную систему прицепа.

Антиблокировочные системы грузовика и прицепа контролируют процесс равномерного торможения колесами. Их работу обеспечивают:

  • датчики угловой скорости колес,
  • электромагнитные клапаны – модуляторы,
  • электронный блок управления,
  • сигнальные лампы.

Система контроля и сигнализации – это манометр, показывающий водителю давление в пневмосистеме (иногда два, по числу контуров рабочей системы), и индикаторные лампы разного цвета, через датчики, контролирующие работу системы и сигнализирующие о ее состоянии.

Тормозная пневмосистема грузового автомобиля технически сложный механизм. Тяжелая габаритная машина должна надежно и предсказуемо вести себя на любой дороге. Знание устройства, принципа действия составных частей и элементов тормозной системы поможет в правильном уходе за ней. В благодарность – тормоза не подведут водителя в экстремальной ситуации.

Источник

Пневматический привод

Пневматический привод (пневмопривод) — совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством энергии сжатого воздуха. Обязательными элементами пневмопривода являются компрессор (генератор пневматической энергии) и пневмодвигатель.

Пневмопривод, подобно гидроприводу, представляет собой своего рода «пневматическую вставку» между приводным двигателем и нагрузкой (машиной или механизмом) и выполняет те же функции, что и механическая передача (редуктор, ремённая передача, кривошипно-шатунный механизм и т. д.).

Основное назначение пневмопривода, как и механической передачи, — преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.).

В общих чертах, передача энергии в пневмоприводе происходит следующим образом:

  1. Приводной двигатель передаёт вращающий момент на вал компрессора, который сообщает энергию рабочему газу.
  2. Рабочий газ после специальной подготовки по пневмолиниям через регулирующую аппаратуру поступает в пневмодвигатель, где пневматическая энергия преобразуется в механическую.
  3. После этого рабочий газ выбрасывается в окружающую среду, в отличие от гидропривода, в котором рабочая жидкость по гидролиниям возвращается либо в гидробак, либо непосредственно к насосу.

В зависимости от характера движения выходного звена пневмодвигателя (вала пневмомотора или штока пневмоцилиндра), и соответственно, характера движения рабочего органа пневмопривод может быть вращательным или поступательным. Пневмоприводы с поступательным движением получили наибольшее распространение в технике.

Содержание

Пневмоприводы с поступательным движением

По характеру воздействия на рабочий орган пневмоприводы с поступательным движением бывают:

  • двухпозиционные, перемещающие рабочий орган между двумя крайними положениями;
  • многопозиционные, перемещающие рабочий орган в различные положения.

По принципу действия пневматические приводы с поступательным движением бывают:

  • одностороннего действия, возврат привода в исходное положение осуществляется механической пружиной;
  • двухстороннего действия, перемещающие рабочий орган привода осуществляется сжатым воздухом.

По конструктивному исполнению пневмоприводы с поступательным движением делятся на:

  • поршневые, представляющие собой цилиндр, в котором под воздействием сжатого воздуха либо пружины перемещается поршень (возможны два варианта исполнения: в односторонних поршневых пневмоприводах рабочий ход осуществляется за счёт сжатого воздуха, а холостой за счёт пружины; в двухсторонних — и рабочий, и холостой ходы осуществляются за счёт сжатого воздуха);
  • мембранные, представляющие собой герметичную камеру, разделённую мембраной на две полости; в данном случае цилиндр соединён с жёстким центром мембраны, на всю площадь которой и производит действие сжатый воздух (также, как и поршневые, выполняются в двух видах — одно- либо двухстороннем).
  • Сильфонные применяются реже. Практически всегда одностороннего действия: усилие возврата может создаваться как упругостью самого сильфон, так и с использованием дополнительной пружины.

В особых случаях (когда требуется повышенное быстродействие) применяют специальный тип пневмоприводов — вибрационный пневмопривод релейного типа.

Одно из применений пневматических приводов является использование их в качестве силовых приводов на пневматических тренажерах.

Принцип действия пневматических машин

Многие пневматические машины имеют свои конструктивные аналоги среди объёмных гидравлических машин. В частности, широко применяются аксиально-поршневые пневмомоторы и компрессоры, шестерённые и пластинчатые пневмомоторы, пневмоцилиндры…

Типовая схема пневмопривода

Воздух в пневмосистему поступает через воздухозаборник.

Фильтр осуществляет очистку воздуха в целях предупреждения повреждения элементов привода и уменьшения их износа.

Компрессор осуществляет сжатие воздуха.

Поскольку, согласно закону Шарля, сжатый в компрессоре воздух имеет высокую температуру, то перед подачей воздуха потребителям (как правило, пневмодвигателям) воздух охлаждают в теплообменнике (в холодильнике).

Чтобы предотвратить обледенение пневмодвигателей вследствие расширения в них воздуха, а также для уменьшения корозии деталей, в пневмосистеме устанавливают влагоотделитель.

Воздухосборник служит для создания запаса сжатого воздуха, а также для сглаживания пульсаций давления в пневмосистеме. Эти пульсации обусловлены принципом работы объёмных компрессоров (например, поршневых), подающих воздух в систему порциями.

В маслораспылителе в сжатый воздух добавляется смазка, благодаря чему уменьшается трение между подвижными деталями пневмопривода и предотвращает их заклинивание.

В пневмоприводе обязательно устанавливается редукционный клапан, обеспечивающий подачу к пневмодвигателям сжатого воздуха при постоянном давлении.

Распределитель управляет движением выходных звеньев пневмодвигателя.

В пневмодвигателе (пневмомоторе или пневмоцилиндре) энергия сжатого воздуха преобразуется в механическую энергию.

Источник