Меню

КОЭФФИЦИЕНТ прибор для измерения параметров силовых трансформаторов

КОЭФФИЦИЕНТ — прибор для измерения параметров силовых трансформаторов

КОЭФФИЦИЕНТ - прибор для измерения параметров силовых трансформаторов

Скидки на приборы Testo для измерения параметров окружающей среды и производственных факторов

Весенняя акция - скидки на тепловизоры testo 865 и testo 872!

Ищем партнеров.

  • Описание
  • Характеристики
  • Документация (1)
  • Дополнительная комплектация (8)

Назначение и область применения прибора КОЭФФИЦИЕНТ:
Микропроцессорный прибор «Коэффициент» в соответствии с требованиями ГОСТ 3484 и методическими указаниями ОРГРЭС позволяет измерять для трансформаторов всех схем и групп соединения по ГОСТ 30830 следующие параметры:

  • коэффициента трансформации;
  • потерь холостого хода на малом напряжении;
  • сопротивление короткого замыкания.

Прибор может использоваться в качестве двух гальванически развязанных вольтметров или вольтметра и амперметра.

Прибор предназначен для оснащения эксплуатационных служб энергосистем и предприятий, изготавливающих энергетическое оборудование, и может использоваться как в цеховых условиях, так и на открытых распределительных устройствах подстанций.

Основные технические характеристики прибора «Коэффициент»:

Допускаемая основная

погрешность измерения, %

значение переменного напряжения (U), В

значение переменного напряжения (Uнн), В

значение переменного тока (I), А

Потери холостого хода на малом напряжении

(активная электрическая мощность) (cos=1,0), Вт

Потери холостого хода на малом напряжении

(активная электрическая мощ-ность) (cos=0,5), Вт

Измерительные кабели приобретаются отдельно. Цена комплекта измерительных кабелей (4 шт.) зависит от длины.

Комплект поставки КОЭФФИЦИЕНТ:
1.Прибор — 1
2.Шнур питания — 1
3.Документация — 1
4.Преобразователь тока (токовые клещи) с руководством по эксплуатации — 1
5.Сборник схем подключения — 1

Источник

Определение коэффициента трансформации силовых трансформаторов

Коэффициентом трансформации (К) называется отношение напряжения обмотки ВН к напряжению обмотки НН при холостом ходе трансформатора:

Для трехобмоточных трансформаторов коэффициентом трансформации является отношение напряжений обмоток ВН/СН, ВН/НН и СН/НН.

Определение коэффициента трансформации силовых трансформаторовЗначение коэффициента трансформации позволяет проверить правильное число витков обмоток трансформатора, поэтому его определяют на всех ответвлениях обмоток и для всех фаз. Эти измерения, кроме проверки самого коэффициента трансформации, дают возможность проверить правильность установки переключателя напряжения на соответствующих ступенях, а также целость обмоток.

силовой трансформаторЕсли трансформатор монтируется без вскрытия и при этом ряд ответвлений, недоступен для измерений, определение коэффициента трансформации производится только для доступных ответвлений.

При испытании трехобмоточных трансформаторов коэффициент трансформации достаточно проверить для двух пар обмоток, причем измерения рекомендуется проводить на тех обмотках, для которых напряжение короткого замыкания наименьшее.

В паспорте каждого трансформатора даются номинальные напряжения обеих обмоток, относящиеся к режиму холостого хода. Поэтому номинальный коэффициент трансформации можно легко определить по их отношению.

Измеренный коэффициент трансформации на всех ступенях переключателя ответвлений не должен отличаться более чем на 2 % от коэффициента трансформации на том же ответвлении на других фазах или от паспортных данных, или от данных предыдущих измерений. В случае более значительного отклонения должна быть выяснена его причина. При отсутствии виткового замыкания трансформатор может быть введен в работу.

Коэффициент трансформации определяют следующими методами:

а) двух вольтметров;

б) моста переменного тока;

в) постоянного тока;

г) образцового (стандартного) трансформатора и др.

силовой трансформаторКоэффициент трансформации рекомендуется определять методом двух вольтметров (рис. 1).

Принципиальная схема для определения коэффициента трансформации методом двух вольтметров для однофазных трансформаторов дана на рис. 1,а. Напряжение, подводимое к двум обмоткам трансформатора, одновременно измеряют двумя разными вольтметрами.

При испытании трехфазных трансформаторов одновременно измеряют линейные напряжения, соответствующие одноименным зажимам обеих проверяемых обмоток. Подводимое напряжение не должно превышать номинального напряжения трансформатора и быть чрезмерно малым, чтобы на результаты измерений не могли повлиять ошибки вследствие потери напряжения в обмотках от тока холостого хода и тока, обусловленного присоединением измерительного прибора к зажимам вторичной обмотки.

Метод двух вольтметров для определения коэффициентов трансформации

Рис. 1. Метод двух вольтметров для определения коэффициентов трансформации: а – для двухобмоточных и б – трехобмоточных трансформаторов

Подводимое напряжение должно быть от одного (для трансформаторов большой мощности) до нескольких десятков процентов номинального напряжения (для трансформаторов небольшой мощности), если испытания проводятся с целью проверки паспортных данных трансформаторов.

В большинстве случаев к трансформатору подводят напряжение от сети 380 В. В случае необходимости вольтметр присоединяется через трансформатор напряжения или включается с добавочным сопротивлением. Классы точности измерительных приборов – 0,2–0,5. Допускается присоединять вольтметр V1 к питающим проводам, а не к вводам трансформатора, если это не отразится на точности измерений из-за падения напряжения в питающих проводах.

При испытании трехфазных трансформаторов симметричное трехфазное напряжение подводят к одной обмотке и одновременно измеряют линейные напряжения на линейных зажимах первичной и вторичной обмоток.

При измерении фазных напряжений допускается определение коэффициента трансформации по фазным напряжениям соответствующих фаз. При этом проверку коэффициента трансформации производят при однофазном или трехфазном возбуждении трансформатора.

Если коэффициент трансформации был определен на заводе-изготовителе, то при монтаже целесообразно измерять те же напряжения. При отсутствии симметричного трехфазного напряжения коэффициент трансформации трехфазных трансформаторов, имеющих схему соединения обмоток Д/У или У/Д, можно определить при помощи фазных напряжений с поочередным закорачиванием фаз.

Для этого одну фазу обмотки (например, фазу А), соединенную в треугольник, закорачивают соединением двух соответствующих линейных зажимов данной обмотки. Затем при однофазном возбуждении определяют коэффициент трансформации оставшейся свободной пары фаз, который при данном методе должен быть равным 2 Kф для системы Д/У при питании со стороны звезды (рис. 2) или Kф/2 для схемы У/Д при питании со стороны треугольника, где Kф – фазный коэффициент трансформации (рис. 3).

Определение коэффициентов трансформации трансформатора, соединенного по схеме Д/У, при несимметричном трехфазном напряжении

Рис. 2. Определение коэффициентов трансформации трансформатора, соединенного по схеме Д/У, при несимметричном трехфазном напряжении: а – первое; б – второе и в – третье измерения

Аналогичным образом производят измерения при накоротко замкнутых фазах В и С. При испытании трехобмоточных трансформаторов коэффициент трансформации достаточно проверить для двух пар обмоток (см. рис. 1,б).

Читайте также:  Благоустройство летнего участка своими руками

Если у трансформатора выведена нейтраль и доступны все начала и концы обмоток, то определение коэффициента трансформации можно производить для фазных напряжений. Проверку коэффициента трансформации по фазным напряжениям производят при однофазном или трехфазном возбуждении трансформатора.

Для трансформаторов с РПН разница коэффициента трансформации не должна превышать значения ступени регулирования. Коэффициент трансформации при приемосдаточных испытаниях определяется дважды – первый раз до монтажа, если паспортные данные отсутствуют или вызывают сомнения, и второй раз непосредственно перед вводом в эксплуатацию при снятии характеристики холостого хода.

Определение коэффициентов трансформации трансформатора, соединенного по схеме У/Д, при несимметричном трехфазном напряжении

Рис. 3. Определение коэффициентов трансформации трансформатора, соединенного по схеме У/Д, при несимметричном трехфазном напряжении: а – первое; б – второе и в – третье измерения

Принципиальная схема универсального прибора типа УИКТ-3

Рис. 4. Принципиальная схема универсального прибора типа УИКТ-3

Для ускорения измерения коэффициента трансформации применяется универсальный прибор типа УИКТ-3, которым можно измерить коэффициенты трансформации силовых и измерительных трансформаторов тока и напряжения без применения постороннего источника переменного тока. Одновременно с измерением коэффициента трансформации определяется полярность первичной и вторичной обмоток. Погрешность в измерении не должна превышать 0,5 % измеряемой величины.

Принцип работы прибора основан на сравнении напряжений, индуктируемых во вторичной и первичной обмотках трансформатора, с падением напряжения на известных сопротивлениях (рис. 4). Сравнение производится по мостовой схеме.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник



Измерители коэффициента трансформации

Измерение коэффициента трансформации и тока возбуждения Megger TTR100

Автоматизированный портативный однофазный измеритель Megger TTR100

Измерение коэффициента трансформации и тока возбуждения TTR25

Автоматизированный портативный измеритель коэффициента трансформации Megger TTR25

Scope TTRM 302

TTRM – новое поколение точных измерителей коэффициента трансформации однофазных и трёхфазных трансформаторов.

Scope TTRM101

Новое поколение измерителей коэффициента трансформации однофазного (TTRM 101 / TTRM 102) и трёхфазного типа (TTRM 301 / TTRM 302).

Scope TTRM 301

Новое поколение измерителей коэффициента трансформации однофазного (TTRM 101 / TTRM 102) и трёхфазного типа (TTRM 301 / TTRM 302).

Scope TTRM 102

Новое поколение измерителей коэффициента трансформации однофазного (TTRM 101 / TTRM 102) и трёхфазного типа (TTRM 301 / TTRM 302).

В нашем интернет магазине вы можете купить измерители коэффициента трансформации по цене рублей.

У нас действительно выгодно покупать измерители коэффициента трансформации

  • Разбираемся в том, что продаём;
  • Конкурентоспособны: хорошие цены, подарки, большой спектр дополнительных услуг;
  • Надежны: более 7 лет на рынке, тысячи продаж, собственный сервисный центр, 85% клиентов возвращаются к нам повторно;

Доставка измерение коэффициентов трансформаций и тока возбуждения осуществляется по Москве и в другие регионы России. Возможны такие услуги как поверка измерение коэффициентов трансформаций и тока возбуждения, а так же выездная демонстрация у вас на предприятии. В нашем офисе можно ознакомиться с каталогами продукции за чашкой кофе, пообщаться с нашими специалистами, посмотреть приборы в работе и получить отзывы из первых рук.

Источник

Умный сайт для вашего энергокомплекса

Приборы для диагностики состояния силовых трансформаторов, часть I

Черепанов Алексей Борисович,
начальник отдела трансформаторов
генерирующей компании

Приборы для диагностики состояния силовых трансформаторов, часть I

В статье приведен перечень методик и приборов, необходимых для комплектации лаборатории диагностики силовых трансформаторов. Основная часть приборов и оборудования проверены автором в работе, а также приведены те, которые находятся в планах на приобретение. Следует учитывать, что, большая часть приборов постоянно изменяется как в лучшую, так худшую сторону.

Эта статья написана в помощь тем, кто заниматься или только собирается заниматься диагностикой и испытаниями силовых трансформаторов. В этой статье не приводятся приборы для контроля параметров трансформаторных масел, т.к. это отдельный, специфичный и немаловажный раздел в диагностики трансформаторов. Проведением измерений параметров трансформаторного масла занимаются другие специалисты.

Я занимаюсь обследованием оборудования напряжением свыше 1000 В более 20 лет. Так получилось, что за это время, пришлось поработать в нескольких фирмах. Приборный парк этих фирм отличался довольно сильно. Это обусловлено подходом к выбору приборов, так как выбор делается на основании множества объективных и субъективных факторов, таких как:

  • выбор фирмы производителя оборудования на основании личных предпочтений, на основании известности фирмы, на основании рекламы;
  • выбор марки прибора на основании заявленных технических характеристик и рекомендаций специалистов;
  • выбор приборов в рамках ограниченного бюджета;
  • выбор приборов не специалистами;
  • невозможность выбора определенных марок и типов приборов из-за корпоративной политики компании;
  • замена типа прибора (не понравился ранее приобретенный);
  • выбор в пользу дешевизны приборов.

При выборе прибора стоит очень внимательно ознакомится с его инструкцией. Потому что чтобы приборы лучше продавались производители или продавцы могут лукавить. Например, могут декларировать востребованную функцию размагничивания трансформатора. А по факту это может оказаться всего лишь функцией подмагничивания, которая предназначена для ускорения процесса измерения. Но вот размагнитить обмотку при помощи нее увы не получится. Или преподносят методику и прибор как «панацею от всех бед». Это сразу настораживает и заставляет задуматься, а так ли это и как такое возможно? Поэтому в случае, когда есть сомнения, лучше перед заказом прибора получить официальное подтверждение о наличие в нем тех или иных функций.

Рисунок 1. Лаборатория для диагностики трансформаторов СиамМастер.

На сегодняшний день для оценки состояния силовых трансформаторов применяются следующие основные методики:

Методики на отключенном оборудовании:

Методики под рабочим напряжением и в режиме нагрузки:

  • измерение сопротивления изоляции;
  • измерение диэлектрических характеристик изоляции;
  • измерение сопротивления постоянному току;
  • измерение сопротивления переменному току;
  • измерение потерь холостого тока на пониженном напряжении;
  • измерение коэффициента трансформации;
  • испытание повышенным напряжением;
  • измерение деформации обмоток методом FRA или SFRA;
  • оценка степени увлажнения твердой изоляции;
  • проверка состояния переключающих устройств.
    • измерение характеристик частичных разрядов;
    • измерение степени запрессовки активной части;
    • тепловизионнное обследование.
Читайте также:  Газоснабжение общественных зданий производственных установок и котлов

Измерение сопротивления изоляции.

Для измерения сопротивления изоляции используются мегаомметры. На сегодняшний день на рынке предлагается множество типов данного вида прибора. В работе сам я попробовал около двух десятков различных типов. Необходимо отметить, что многие модели мегаомметров под нагрузкой не выдают заявленной величины напряжения.

Для диагностики мощных силовых трансформаторов желательно использовать мегаомметры более дорогого ценового сегмента – тестеры изоляции. В них помимо стандартной функции измерения изоляции и испытания изоляции повышенным постоянным напряжением реализованы ряд дополнительных функций. Например, измерение напряжения приложенного к объекту испытания, измерение ёмкости изоляции, измерение токов абсорбции изоляции, проведение различных автоматических тестов. Пробовал в работе следующие марки тестеров изоляции: С.А6545/47(Chauvin Arnoux), Fluke 1550/55 (Fluke Industrial), MI3200 (Metrel), MIT525 (Megger). Все вышеперечисленные тестеры изоляции имеют примерно одинаковые характеристики. Единственное отличие — в зависимости от модификации может меняться максимальное тестовое напряжение: 5 или 10 кВ. Для диагностики трансформаторов этот параметр не имеет значения, но вот для ряда оборудования наличие тестового напряжения 10 кВ в работе предпочтительнее. Наиболее комфортным в работе для меня оказался MI3200. Основное преимущество — удобное меню настроек прибора и наглядность отображения информации на дисплее. После запуска измерения не нужно совершать дополнительных переключений, чтобы проконтролировать все необходимые величины. Меньше всего понравился Fluke 1550/55 из-за мягкого громоздкого кейса и невозможности производить подзарядку прибора пока в него вставлены измерительные щупы.

Рисунок 2. Тестеры изоляции

слева – направо С.А6545, Fluke 1555, MI3200, MIT525.

Измерение диэлектрический характеристик изоляции.

Для измерения диэлектрических характеристик изоляции используются мосты переменного тока. В начале карьеры работал мостами МД-16, Р5026, Р5026М. Потом попробовал в работе следующие марки мостов переменного тока: СА7100 (ОЛТЕСТ), Тангенс 2000 (НИИЭМП), Вектор-2М (Точприбор).

Мосты серии CA7100 поставляются в нескольких модификациях. В СА7100-3 встроен мегаомметр для совместного проведения измерений сопротивления изоляции и диэлектрических характеристик. С моей точки зрения выигрыш времени незначительный за счет необходимости коммутации блоков. При этом разница в цене между модификацией со встроенным мегаомметром и без мегаомметра равна хорошему тестеру изоляции, который пригодится и для других работ. Кроме того, синий кабель поставляемый в комплекте с мостом серии СА7100 очень неудобный и тяжелый из-за этого быстро выходит из строя. Поэтому как правило не используется. Наличие тележки, блока коммутации и встроенного повышающего трансформатора необходимо при выполнении работ в пределах одной станции при отсутствии передвижной лаборатории.

Тангенс 2000 неплохой мост. По характеристикам не уступает серии СА7100. Но более громоздкий. Имеет один недостаток. При снижении заряда аккумулятора менее 30% могут очень сильно «плыть» показания при измерениях.

Задумка измерителя Вектор-2М в целом неплохая. Измеритель работает не по классической мостовой схеме, а измеряет угол между током и напряжением. Но вот измерения в условиях наведенного напряжения, особенно по «обратной» схеме, может стать огромной проблемой. Не понравился эталонный конденсатор. Слабая изоляция корпуса от земли и без дополнительной изоляции легко перекрывается и конденсатор может выйти из строя. За десять лет эксплуатации четырех комплектов Вектор-2М вышли из строя 3 эталонных конденсатора.

Для меня с точки зрения перевозки (в том числе и авиатранспортом) удобнее блок СА7100-2 без дополнительного оборудования.

Рисунок 3. Мосты переменного тока

слева – направо СА7100-2, Тангенс 2000, Вектор-2М.

Измерение сопротивления постоянному току.

Для измерения сопротивления постоянному току применяются два метода. Метод амперметра – вольтметра и мостовой метод.

Для измерения мостовым методом применяются мосты постоянного тока. В зависимости от габарита трансформатора можно успешно применять те или иные типы приборов. Основные проблемы возникают при измерении трансформаторов мощностью от 125 МВА из-за высокой индуктивности обмоток и низкого значения сопротивления обмоток низкого напряжения. Такая же проблема возникает при измерении сопротивления обмоток низкого напряжения сухих трансформаторов (значение сопротивления обмоток менее 1 мОм). Все используемые мной в работе мосты постоянного тока ПТФ-1 (Элтех), С.А.6250 (Chauvin Arnoux), Виток (НИИЭМП), ПФИ24-10Р (НПФ Инфрохром-99), МЭН-3 (КБ Прибор), МИКО 2.3 (СКБ ЭП), МИКО-7 (СКБ ЭП), МИКО-8 (СКБ ЭП) и др. не смогли корректно измерить значение сопротивление обмотки низкого напряжения сухих трансформаторов. При измерение мощных трансформаторов плохо себя зарекомендовали МЭН-3, Виток, МИКО-7, С.А.6250. МИКО-7 у нас был в базовой версии и у него не хватало времени измерения, чтобы намагнитить измеряемую обмотку. Чтобы исправить этот недочет необходимо было платно перепрошить прибор до расширенной версии. У миллиомметра ПТФ-1 почти во всех диапазонах измерений показывается всего три разряда измеряемой величины, и он очень капризен — у него из-за нагрева или охлаждения могут плыть показания. Слышал неплохие отзывы о DLRO10HD (Megger) и о MI3250 (Metrel) но сам с ними не работал.

Рисунок 4. Мосты постоянного тока

слева – направо Виток, DLRO10HD, ПФИ24-10Р, МИКО-7.

Помучившись с различными типами мостов, мы вернулись к измерению сопротивления постоянного тока по классической схеме «амперметра – вольтметра». Заменили самый тяжелый и нестабильный элемент в схеме – автомобильный аккумулятор на сетевой, стабилизированный, трансформаторный источник питания на 30В/5А типа QJ3005C (Ningbo JiuYuan Electronic, существует более тяжелая версия на 10А). А «нежные» стрелочные вольтамперметры постоянного тока типа М2044 на цифровые мультиметры высокой точности типа PC500a или PC710 (Sanwa). При этом мультиметр можно использовать только один. Так ток, выдаваемый источником, практически не меняется во время проведения измерений (±0,01…0,02А при величине подаваемого тока 5А) и хорошо контролируется по встроенному в источник амперметру. Точность измерения мультиметра не менее 0,12%. Отключение такой схемы на время переключения РПН не требуется. Правильность измерения данной схемы проверена на мощных силовых трансформаторах (ТЦ 1000000/500, АТДЦТН 200000/220/110 и т.п.) и на сухих трансформаторах (ТRV -2000/6,3, ТСНЗ 2500/10 и т.п.) с сопротивлением обмоток менее 0,5 мОм.

Читайте также:  Спортивные маты для детей выбираем правильно

Рисунок 5. Комплект для измерения сопротивления постоянному току

слева источник питания QJ3005C, справа мультиметр PC710.

Измерение сопротивления переменному току.

Для измерения сопротивления переменному току (сопротивление короткого замыкания) могут применяться специализированные комплекты или схема, собираемая на месте измерения из отдельных приборов переменного тока.

Наиболее широкую известность имеют комплекты К505 / К540 или их электронные аналоги типа К540-3 (Молния-Белгород), СА540 (ОЛТЕСТ). Основным недостатком электронных комплектов является высокая стоимость, в остальном комплекты удобны в работе. Для меня более удобным показался СА540.

Другим вариантом проведения измерений является использование мультиметров или аналоговых стрелочных приборов. При высоких значениях токов вместо мультиметров с трансформатором тока проще и удобнее использовать токовые клещи.

Рисунок 6. Комплекты для измерения сопротивления переменному току

слева – направо К540, Молния К540-3, СА540.

Измерение потерь холостого хода на пониженном напряжении.

Для измерения потерь холостого хода трансформаторов используются те же комплекты, что и для измерения сопротивления переменному току. При отсутствии комплекта для проведения измерения достаточно наличия аналогового ваттметра типа Д566 (Д5106) и двух мультиметров. Как правило ваттметры многопредельные, но все равно желательно оценить ожидаемое значение потерь, чтобы значение измеряемых величин не находилось в начале шкалы, что приведет к высокой погрешности измерений. И наоборот, чтобы диапазона выбранного ваттметра хватило для проведения измерений. В этом отношении аналоговый комплект К540 был очень неудобен.

Есть вариант использования цифрового ваттметра типа АСМ-8003 (АКТАКОМ) или СР3010/2-000 (ЗИП-Научприбор). Прибор АСМ-8003 позволяет регистрировать ток, напряжение и активную мощность. К сожалению, заявленный диапазон при измерении потерь ограничен разрешением по мощности 1 Вт. СР3010/2-000 является цифровой копией Д566. Существует несколько модификаций с различными пределами измерений.

Рисунок 7. Ваттметры

слева – направо Д566, АСМ-8003, СР3010/2-000.

Измерение коэффициента трансформации.

Для измерения коэффициента трансформации могут применяться цифровые комплекты К540-3 (Молния-Белгород), СА540 (ОЛТЕСТ) или специализированные приборы типа TTR330 (Megger), MI3250 (Metrel). К сожалению, из-за высокой стоимости специализированных приборов и комплектов на практике приходится использовать два вольтметра или мультиметра.

Рисунок 8. Измерители коэффициента трансформации

Источник

Измерители коэффициента трансформации

Лидеры продаж

  • Электроизмерительные приборы
  • Генераторы шума
  • Принадлежности для многофункциональных тестеров
  • Мобильные установки предварительной локации повреждений
  • Тестеры высоковольтных выключателей
  • Измерители коэффициента трансформации
  • Кабелерезы
  • Тепловизоры
  • Трассопоисковые комплекты
  • Течеискатели воды
  • Корреляционные течеискатели
  • Ручные устройства для прочистки труб
  • Спирали
  • Промывочные насосы
  • Оборудование для алмазного бурения
  • Установки алмазного бурения
  • Клуппы ручные
  • Видеоэндоскопы
  • Люксметры
  • Трубогибы
  • Резьбонарезной инструмент
  • Генераторы НЧ
  • Принажлежности для анализаторов качества электроэнергии
  • Испытательное оборудование
  • Прожигающие установки
  • Прогрузка первичным током
  • Измерения оммического сопротивления обмоток
  • Инструмент для снятия изоляции
  • Пиромерты
  • Локаторы трассопоисковые
  • Акустические течеискатели
  • Телеинспекция и видеодиагностика
  • Механические прочистные машины
  • Прочистные насадки
  • Реагенты для очистки отопительного оборудования
  • Алмазные коронки
  • Клуппы электрические
  • Труборезы
  • Толщиномер ЛКП
  • Шумомеры
  • Опрессовочные насосы
  • Приборы для определения места повреждения кабеля
  • Генераторы трассопоисковые
  • Генераторы ВЧ
  • Принадлежности для приборов САТУРН
  • Рефлектометры
  • Тестирование высоковольтных выключателей
  • Инструмент для опресовки наконечников
  • Ультрафиолетовые камеры
  • Трассировка не металлических труб
  • Системы контроля утечек воды
  • Оборудование для прочистки труб
  • Гидродинамические прочистные машины
  • Реагенты для очистки и защиты инженерных сетей
  • Резьбонарезные станки
  • Камнерезное оборудование
  • Ультразвуковые толщиномеры
  • Генераторы импульсов
  • Принадлежности к измерительным приборам
  • Точная локализация мест повреждения
  • Измерители параметров трансформаторов
  • Ручной слесарно-монтажный инструмент
  • Георадары
  • Герметик для устранения течей
  • Желобонакатчики
  • Электрогенераторы
  • Твердомеры
  • Генераторы сигналов специальной формы
  • Генераторы звуковой частоты
  • Электромонтажный инструмент
  • Аксессуары для трассоискателей
  • Промывка систем отопления и водоснабжения
  • Реагент для прочистки канализационных засоров
  • Сварочные генераторы
  • Генераторы векторных сигналов
  • Определение мест повреждений в оболочке
  • Дополнительные принадлежности
  • Насосные агрегаты (Мотопомпы)
  • Генераторы высоковольтных импульсов
  • Компрессорное оборудование
  • Определение кабеля в пучке
  • Дальномеры лазерные
  • Мотобуры
  • Электротехника
  • СНЧ-установки высоковольтные
  • Мегаомметры (измерители сопротивления изоляции)
  • Испытательные высоковольтные установки
  • Трассоискатели, кабелеискатели, георадары
  • Миллиомметры
  • Испытания средств защиты
  • Оборудование для обслуживания труб
  • Измерители сопротивления заземления
  • Оборудование для диагностики кабельных линий
  • Строительная техника и инструмент
  • Измерители параметров высоковольтной изоляции
  • Тестеры УЗО
  • Теcтеры трансформаторного масла
  • Неразрушающий контроль
  • Измерители параметров цепей
  • Дополнительные принадлежности к приборам
  • Измерители параметров окружающей среды
  • Мультиметры
  • Смазочно охлаждающая жидкость
  • Электроизмерительные клещи
  • Проверка чередования фаз. Индикаторы напряжения
  • Вольтамперфазометры
  • Megger
  • Metrel
  • Sonel
  • Генераторы сигналов
  • GW Instek
  • АКИП
  • Портативные осциллографы
  • Измерители тангенса диэлектрических потерь
  • Fluke
  • Строительные
  • Трассоискатели Radiodetection
  • Трассоискатели RIDGID
  • Трассоискатели Сталкер
  • Трассоискатели ТЕХНО-АС
  • Дополнительные принадлежности для телеинспекции
  • RIDGID
  • Прочистные машины барабанного типа
  • Прочистные машины секционного типа
  • Принадлежности для механических аппаратов
  • Дополнительные принадлежности
  • Резьбонарезные гребенки для станков
  • Дополнительные принадлежности
  • Осциллографы
  • Источники напряжения и тока
  • Приборы контроля состояния электрических машин
  • Тестирование аккумуляторных батарей
  • Киловольтметры
  • Дополнительные принадлежности для приборов
  • Посейдон
  • Принадлежности для гидродинамических аппаратов
  • О магазине
  • Доставка
  • Оплата
  • Гарантия

©Tectron: Оборудование для энергетики, ЖКХ и строительства.

Россия, Московская область,
г. Химки, ул. Зеленая, д.13
8(495)118-22-92

Источник