Меню

Автоматические линии из специализированного оборудования

АВТОМАТИЧЕСКИЕ ЛИНИИ СТАНКОВ

Автоматическими называют поточные линии станков и агрегатов, связанные в единую систему, в которой весь комплекс технологических процессов происходит без прямого участия рабочего, который лишь контролирует и налаживает оборудование. Область применения автоматических линий — массовое производство устойчивых по конструкции изделий. Их используют в различных отраслях машиностроения с довольно широкой номенклатурой операций: сверлильно-расточных, резьбонарезных, токарных, фрезерных, шлифовальных, зуборезных, а также кузнечно-прессовых, литейных, сварочных и термических. В автоматические линии могут входить агрегаты, осуществляющие сборочные операции, антикоррозийные покрытия, взвешивание, упаковку и другие вспомогательные работы.

Автоматические линии классифицируют по ряду признаков.

1. В зависимости от величины штучного выпуска деталей применяются однопоточные линии (последовательного действия) и многопоточные линии (параллельно-последовательного действия).

2. По роду станков различают автоматические линии, скомпонованные: из станков, специально построенных для данной линии; из агрегатных станков; из универсальных станков, специально модернизированных и автоматизированных для встройки в автоматическую линию.

3. По способу передачи обрабатываемых деталей со станка на станок различают линии: со сквозным транспортированием с проходом детали сквозь места зажима (применяются при обработке корпусных деталей на агрегатных станках); с верхним транспортированием; с боковыми транспортированием; с комбинированным транспортированием; с роторным транспортированием, применяемым в роторных линиях. Детали могут транспортироваться со станка на станок самостоятельно, а в тех случаях, когда конфигурация их неудобна для транспортирования, они предварительно устанавливаются и закрепляются на специальных плитах-спутниках и перемещаются вместе с ними.

4. По расположению оборудования различают замкнутые и незамкнутые автоматические линии. Замкнутые линии бывают круговые (станки-комбайны) и прямоугольные. Большинство автоматических линий имеют незамкнутое расположение оборудования: прямолинейное, Г-образное, П-образное и др.

Детали, подлежащие обработке в автоматических линиях, должны быть, прежде всего, технологичными. Заготовки для них должны иметь удобные базы для установки и фиксации в приспособлениях. Конструкция детали должна отвечать требованиям ритмичной обработки, т. е. обеспечивать приблизительно равное время выполнения отдельных операций. В процессе обработки заготовок целесообразно иметь наименьшее количество перестановок и перезажимов, производить максимально возможное совмещение операций, не связанных, однако, с применением очень сложного комбинированного инструмента.

Режущий инструмент выбирают в соответствии с технологией обработки. Обычно применяют нормальный или специальный инструмент: однолезвийный, многолезвийный, а также комбинированный в виде целых блоков. Важным фактором, от которого может зависеть рентабельность автоматической линии, является режим обработки и стойкость инструмента. Поскольку количество одновременно работающего инструмента в линии велико, выход из строя одного из них, смена или подналадка вызывает остановку всего автоматизированного участка. Вопрос оптимальной стойкости инструмента и, следовательно, режимы резания пока решают опытным путем, но уже намечаются пути расчета этих факторов. В действующих автоматических линиях режимы резания установлены с таким расчетом, чтобы инструмент работал без переточки всю смену, а в отдельных случаях только до обеденного перерыва, во время которого затупившийся инструмент можно заменить.

  1. Оборудование для автоматических линий

Как сказано ранее, автоматические линии могут оснащаться агрегатными специальными или универсальными станками. Линии из агрегатных станков находят наибольшее распространение и используются при организации нового производства или при капитальной реконструкции предприятия. Опыт отечественного и зарубежного машиностроения показал целесообразность внедрения переналаживаемых автоматических линий. В связи с этим создаются модели агрегатных станков, имеющих постоянные агрегатные столы и сменные силовые головки, устанавливаемые на них.

Линии из специальных станков применяются редко. Стоимость таких линий высока и сроки освоения их длительны, так как каждый станок линии приходится проектировать, а затем осваивать в производственных условиях. Кроме того, недостатком этих линий является невозможность использования их оборудования для производства других деталей. Автоматические линии из специальных станков находят применение для сравнительно несложных (при небольшом числе операций) технологических процессов. Станки часто монтируются на одной станине, как, например, в линиях для обработки корпусов часов, сегментов пишущих машинок и пр.

Автоматическая линия для обработки сегментов пишущих машинок. Сегменты в приспособлениях устанавливаются на бесконечном ленточном транспортере-столе и обрабатываются в различных позициях инструментом силовых головок. Линии из обычных агрегатных или специальных станков обладают тем недостатком, что на них утрачивается маневренность производства и имеет место так называемый «консерватизм технологии», т. е. затрудняется возможность изменения технологии обработки данного изделия, а также быстрого перехода от производства одного изделия к другому, так как автоматическое оборудование специализировано и приспособлено к производству только одного какого-то вида продукции. Это привело к тому, что в последнее время широкое распространение получили автоматические линии из типового универсального оборудования, т. е. из автоматизированных станков обычных типов: токарных, сверлильных, фрезерных, зуборезных, шлифовальных и т. п. Конечно, эти станки должны быть соответствующим образом приспособлены для встройки в автоматическую линию. Использование универсального оборудования позволяет снизить сроки изготовления автоматических линии, увеличивает надежность работы и обеспечивает возможность переналадки их на разные типоразмеры деталей или на новый объект производства. В проведенной ЭНИМСом работе по типажу станков, приспособленных для встройки в автоматические линии, было установлено, что свыше 30 моделей полуавтоматов и автоматов нормального типа могут встраиваться без изменений, около 50 моделей требуют при встройке изменений, а на базе 230 моделей могут быть созданы модификации станков для встройки в автоматические линии. Такие типовые универсальные станки после их работы в одной автоматической линии могут быть использованы в других линиях для производства совершенно иных деталей, а также в качестве самостоятельно действующего оборудования. В настоящее время с целью сокращения номенклатуры автоматических линий для обработки деталей типа тел вращения, а также числа типоразмеров станков и другого оборудования, входящего в линии, проводится работа по проектированию линий для обработки указанных деталей в определенном диапазоне типоразмеров. Из общего количества автоматических линий, подлежащих поставке в ближайшие годы машиностроительным предприятиям, линии из агрегатных станков будут составлять ориентировочно 15%, из специальных станков — 10%, из универсального типового оборудования- 50%.

Наряду с созданием линий из нового оборудования весьма эффективной является постройка линий на основе использования действующего оборудования, модернизированного соответствующим образом. Применение таких линий требует меньших капиталовложений и меньше времени на их изготовление и освоение. Кроме того, весьма важным обстоятельством является возможность привлечения к работам по автоматизации процессов производства широкого круга предприятий.

Компоновка оборудования.

Автоматические линии представляют собой сложную систему станков и различного вида автоматических устройств. Поэтому потеря работоспособности линии может произойти из-за отказа инструмента, приспособления, механических, гидравлических, электрических и пневматических устройств, рабочих органов межоперационного транспорта, автоматических средств технического контроля и т.д. В связи с этим возникает необходимость так скомпоновать оборудование, чтобы временные остановки агрегатов не влияли на работу всей линии. В отношении организации потока и компоновки автоматические станочные линии выполняются в трех вариантах:

1. Безбункерные автоматические линии. На таких линиях обрабатывают обычно корпусные детали: блоки цилиндров, корпуса коробок скоростей автомобиля и т. п. Заготовка проходит всю линию, перемещаясь общим транспортером последовательно с одной рабочей позиции на другую на величину расстояния между позициями или на величину размера заготовки.

2. Бункерные автоматические линии. Они состоят из отдельных автоматических станков, снабженных механизмами питания (бункерами) и связанных друг с другом транспортерами, передающими обрабатываемые детали с одной позиции на другую.

3. Автоматические линии с приемниками-накопителями запасов. В этом случае линия делится на отдельные участки, между которыми размещаются промежуточные накопители запасов полуфабрикатов Б (бункерно-прямоточные и бункерно-поточные линии). При таком варианте временная потеря работоспособности какого-либо участка не приводит к остановке всей линии. Задача при проектировании линии в этом случае сводится к выбору места установки и количества бункеров.

Источник

Автоматические линии из специализированного оборудования

Автоматические линии, предназначенные для обработки строго определенных по форме и размерам изделий, компонуют из специализированных станков. Специализированные станки изготавливают на базе существующих универсальных или делают в виде агрегатных станков с жестко закрепленными шпинделями. Такие линии проектируют для массового или крупносерийного производства при изготовлении, например, головок двигателей, поршней, шестерен различного назначения, корпусов коробок передач. При изменении вида изделия на таких линиях необходима коренная переделка узлов или их замена. С целью уменьшения объема переделки и для увеличения количества обрабатываемых однотипных деталей специализированные станки проектируют с определенным диапазоном размеров обработки. В этом случае при переходе на новое изделие нужна только инструментальная переналадка и изменение величин конечных перемещений.

При изготовлении детали предусмотрен автоматический контроль после каждой операции. В автоматической линии на базе токарных гидрокопировальных полуавтоматов типа 1722 (рис. 132) транспортер 1 подает заготовку 2 в накопитель 3. Подъемник 4 передает заготовку на станок 5 для обработки. После каждой операции деталь контролируется автоматическим контрольным устройством 6. Стружка от станков убирается шнековым транспортером 7.

Рис. 132. Структурная схема автоматической линии из специализированных станков

К автоматическим линиям из специального оборудования можно отнести большинство роторных линий.

Роторные автоматические линии состоят из машин непрерывного действия, на которых весь технологический процесс разбит на элементарные операции. Наибольшую эффективность автоматические линии дают при прессовании, обжигании, глубокой вытяжке. В одних роторных машинах элементы совершают движения по окружности, а в других (цепного типа) — по криволинейным участкам, переходящим в прямолинейные замкнутые (подобно эскалатору в метро). В машиностроении роторные автоматические линии получили применение при листовой и объемной штамповке, при изготовлении втулочно-роликовых цепей, фрезеровании и обточке небольших деталей, окраске, маркировке, термообработке и нанесении гальванопокрытий. Основное достоинство линий состоит в том, что на них можно производить разнохарактерные операции.

Читайте также:  Обоснование безопасности Проектирование изготовление технических устройств для ОПО Эксплуатация ОПО

Типовая роторная автоматическая линия состоит из загрузочного ротора, рабочей машины роторного или цепного типа и транспортного ротора (рис. 133). Рабочая машина может иметь несколько инструментальных блоков, которые заменяются автоматически. Наладка инструмента производится вне машины на специальном стержне, а в работу включается запасной инструментальный блок. В автоматических роторных линиях предусматривается полный контроль изделий с помощью контрольных роторов. В роторных машинах применяют для получения больших усилий механогидравлические или гидравлические приводы, а для небольших усилий — кулачковый, механический привод. Роторная автоматическая линия объединяется единой системой управления, защиты. Для длительных операций создают многопозиционную машину, а для кратковременных малопозиционную. В типовой линии горячей штамповки (рис. 133, а) заготовка подается на роторную машину нагрева 1, далее на ротор штамповки 3, обрезки облоя 5, охлаждения 6. Заканчивается обработка на роторе травления 7. Управление осуществляется роторами 2 и 4. Вслучае малой партии однотипных деталей роторные машины линии создают многономенклатурными (рис. 133, б), оснащенными инструментом для одновременной обработки различных изделий (1, 2, 3 — рабочие роторные машины, 4, 5, 6 — транспортные).

Рис. 133. Схемы линий из роторных машин:

а — типовая линия горячей штамповки; б — многономенклатурная линия

Примеры компоновки автоматических линий

Рассмотрим примеры компоновки автоматических линий из разного типа станков для обработки различного типа деталей.

Рис. 134. Схема компоновки автоматической линии для обработки деталей типа корпусных

Автоматическая линия для обработки деталей типа корпусных (рис. 134) состоит из подъемного устройства 1, межоперационного кантователя 2, рабочих машин 3, шагового транспортера 4, поворотного устройства 5, привода шагового транспортера 7 и толкателя 8.

На шаговом транспортере обрабатываемая деталь 6 может перемещаться непосредственно или с помощью приспособления-спутника. Заготовка с подъемного устройства 1 поступает на станок и обрабатывается в рабочей зоне, после чего межоперационный кантователь 2 подает ее на следующие два станка. После обработки на этих станках деталь поступает на поворотное устройство 5, ориентируется для дальнейшей обработки и поступает в рабочую зону последнего станка. После окончания цикла детальсбрасывает с транспортера толкатель 8 на поперечный транспортер для подачи на склад или на линию дальнейшей обработки.

Автоматическая линия для обработки заготовок (рис. 135), имеющих форму тела вращения типа вала в отличие от предыдущих, имеет в своем составе накопители для создания задела заготовок. Заготовка 3 по внешнему транспортеру поступает в накопитель 1, в котором автоматически ориентируется. Из накопителя 1 заготовка поступает на шаговый транспортер 4, обрабатывается на станке 2 и попадает па позицию питателя 5. Питатель устанавливает заготовку в центре токарного автомата, а после обработки снимает и укладывает на транспортер. После первого автомата заготовка проходит обработку на втором автомате и поступает на поворотное устройство 6, где изменяет ориентацию и следует на дальнейшую обработку. Шаговый транспортер получает движение от привода 7.

Рис. 135. Компоновка автоматической линии для обработки деталей типа валов

Автоматическая линия сборки кузова легкового автомобиля (рис. 136) состоит из участков предварительной сборки: I — поля; II — шасси; левой и правой боковых панелей — III; IV— крыши; участка сборки на пластинчатом конвейере — V; участка комплектующих изделий — VII. Общая сборка кузова и контроль производится на автоматическом участке VI с главным кондуктором.

Линия оборудована складами накопителей 1, 5, 9, 14, 17, 18, 20, 25; кантователями 2, 4, 6, 8, 21, 22, 23, 24; автоматическим главным кондуктором 3, пластинчатыми конвейерами 7, 19; сборочными конвейерами 10, 13 левой и правой боковых панелей, в которые входят накопители 11, 12; конвейерами сборки пола 16, шасси 15, крыши 26; накопителями переднего остова 27, надколесных левой и правой дуг 28 и задней обшивки 29. Работа автоматической линии сборки кузова следующая. На участках I, II, III и IV параллельно происходит сборка частей кузова автомобиля. На позиции 16 собирается пол автомобиля, который поступает на позицию 15 сборки шасси. Одновременно на позицию поступают комплектующие изделия с позиций 27, 28, 29. Собранный пол с шасси, передним мостом и задней обшивкой поступают на склад-накопитель 18.

Рис. 136. Структурная схема автоматической линии для сборки кузовов легковых автомобилей

На участке IV происходит сборка крыши кузова, которая поступает на склад-накопитель 25. Боковые панели сворачивают и собирают на позициях 10 и 13, куда поступают рамы с позиций 11 и 12. После сборки боковые панели поступают на склады-накопители 14 и 9 по транспортеру. Далее собранные изделия с участков I, II, III и IV поступают на пластинчатые конвейеры 7, 19, где происходит предварительная сборка всего кузова, а на автоматическом главном конвейере VI — окончательная сборка кузова и контроль на главном кондукторе 3.

С главного кондуктора кузов поступает в склад-накопитель 1 и далееидет на линию комплектации для установки сидений, арматуры, обивки дверей. Общая транспортировка изделий в линии с участка на участок обеспечена подвесными конвейерами. Линию обслуживают сборочные роботы.

Цехи и заводы-автоматы

Создание заводов-автоматов — завершающий этап полной автоматизации производства. Этому этапу предшествует создание на предприятиях автоматизированных участков и цехов.

Цехом-автоматом принято называть несколько автоматических линий, объединенных транспортной системой и снабженных единой системой управления.

Заводом-автоматом называют предприятие, на котором весь производственный процесс вместе с подготовкой производства, управлением технологическими процессами, учетом автоматизирован.

В цехах и на заводах-автоматах технологическое оборудование, транспорт и устройства управления должны работать безотказно длительное время. В случае аварий на заводах-автоматах должно быть автоматически введено в действие резервное оборудование. Роль человека сведена к контролю и управлению ходом процесса.

В цехах и на заводах-автоматах процесс производства автоматический, начиная от заготовительных операций и до упаковки. При этом обеспечена межучастковая и межцеховая транспортировка изделий, автоматическая уборка стружки и других отходов, автоматизированное складирование.

Автоматизированные цехи классифицируют по основному типу используемого оборудования: цехи из унифицированного оборудования, из станков с программным управлением, из типового и специального оборудования.

Для массового производства подшипников нашли широкое применение цехи и заводы-автоматы из специального и типового оборудования; для массового производства изделий типа корпусных — из агрегатных станков, а изделий из пластмасс типа колпачков, патронов — из роторных автоматических линий. Для серийного производства изделий применяют станки с ЧПУ, у которых высокая производительность сочетается с универсальностью и мобильностью.

Рассмотрим компоновку цеха-автомата для обработки цилиндрических зубчатых колес нескольких типоразмеров. Схема цеха (рис. 137) состоит из трех участков: I и II — участки черновой, III — участок чистовой обработки изделий. Все участки связаны транспортной системой 1 подачи заготовок и системой транспортировки и раздачи инструментов 6. Транспортная система оборудована накопителями 2 заделов и складом-накопителем 7 перед агрегатом термообработки 8. Управление последовательностью обработки заготовки, выбор инструмента, переналадка и другие операции выполняются ЭВМ 5. ЭВМ определяет свободные места в накопителях 2 и нарабочих позициях станков 3 и выдает команды на транспортирующие устройства. Управление участками осуществляется с пультов 4. После черновой обработки деталь поступает на термообработку в термоагрегат 8, с которого идет на чистовую обработку.

Рассмотрим компоновку автоматизированного цеха для обработки блоков цилиндров автомобильного двигателя (рис. 138). Производительность цеха — 86 блоков в час. По пяти последовательно расположенным независимо работающим секциям (1Л95, 1Л96, 1Л97, 1Л98, 1Л99) распределены 147 станков. Для работы силовых узлов, поворотных механизмов, транспортных устройств, механизмов зажима и фиксации деталей используется гидропривод. В комплект линий входят инструментальные склады с запасом инструмента и приспособлений для настройки инструмента.

Рис. 137. Структурная схема цеха-автомата для обработки зубчатых колес

Рис. 138. Структурная схема цеха-автомата для обработки головок и блоков цилиндров двигателя автомобиля

Все линии 3 связаны транспортерами 1. В секциях есть накопители деталей 2, которые включаются автоматически. Управление работой линии осуществляется участковыми командоаппаратами 4 и центральными пультами 6 управления каждой секции. Управляет работой всего цеха центральный пульт управления (ЦПУ).

Первая секция 1Л95 состоит из двух участков, в каждом из которых расположены два ряда станков (двухпоточные участки). В этой секции фрезеруют основные плоскости блока, сверлят базовые отверстия и циклюют платики. Секция укомплектована двух- и четырехшпиндельными фрезерными станками. Крепление детали производится в четырехместном приспособлении на столе. После обработки детали подаются в вибробункер, в котором происходит вытряхивание стружки. Мойка блоков производится на моечной станции.

Далее детали поступают на линию 1Л96, которая состоит из четырех двухпоточных участков, между которыми расположены поперечные транспортеры и накопители заделов. На этой линии производится чистовое и черновое фрезерование торцов коренных подшипников, плоскостей под привод распределительного вала и масляный насос, растачивание отверстий под гильзы цилиндров, сверление отверстий и нарезание резьбы.

Читайте также:  Установка автомагнитол в Тамбове

Расточные операции, завертывание болтов и запрессовка втулок выполняются на третьей линии 1Л97, которая состоит из двух участков: однопоточного и четырехпоточного. Для автоматического контроля на линии установлены контрольные автоматы. Линия 1Л99 включает в себя два независимых однопоточных участка. На этой линии выполняют чистовое фрезерование плоскостей под головки блоков, фрезерование и расточку плоскостей под привод распределительного вала и насоса. Для контроля отверстий после развертки стоят контрольные, автоматы. Завершается обработка блока цилиндров на линии 1Л98, состоящей из трех двухпоточных участков с одним потоком на каждом контрольном автомате 5. Соединение оборудования в линии параллельно-последовательное с помощью продольных и поперечных транспортеров. На этой линии производится расточка отверстий под гильзы, расточка и развертывание отверстий под толкатели. Для удаления стружки комплекс оборудован ленточными и скребковыми транспортерами, расположенными в траншеях, проходящих вдоль линии ниже уровня пола. Оборудование линии скомпоновано в основном из нормализованных узлов, что облегчает ее перестройку при изменении конструкции обрабатываемой детали.

Аналогичное устройство имеет цех-автомат для обработки головки блока транспортного двигателя на базе автоматических линий мод. 1Л151а, 1Л1516, 1Л151в.

На заводе-автомате (рис. 139) оперативное управление производством выполняется с помощью ЭВМ центральным вычислительным центром (ВЦ) завода, с которого команды поступают на пульт управления ПУ-1 и пульт управления цехами ПУ-2, а с них на участковый пульт управления ПУ-3. По обратной связи информация поступает с датчиков сбора производственной информации с участков ПУ-3 и далее по цепочке на ВЦ. С участков идет информация, например, о запуске и выпуске деталей, работе оборудования.

Рис. 139. Структурная схема завода-автомата

Источник



Автоматические линии

date image2014-02-02
views image15849

facebook icon vkontakte icon twitter icon odnoklasniki icon

Основные понятия и определения

Автоматическая линия (АЛ) – представляет собой совокупность технологического оборудования, установленного в соответствии с технологическим процессом обработки, соединённого автоматическим транспортом и имеющего общую систему управления.

Функции человека при этом сводятся к контролю за работой оборудования и его поднастройкой, а так же загрузке заготовок в начале цикла и выгрузки изделий в конце него. Причём последние операции всё чаще передаются промышленному роботу.

АЛ предназначены для изготовления деталей в условиях крупносерийного и массового производства и являются основным средством решения задач комплексной автоматизации. В связи с продолжающейся реконструкцией и строительством новых заводом с широким внедрением безлюдной технологии потребности в АЛ непрерывно возрастают. Экономическая эффективность использования АЛ достигается благодаря их высокой производительности, низкой себестоимости продукции, сокращению обслуживающего персонала на заданную программу выпуска, стабильному качеству изделий, ритмичности выпуска, созданию условий для внедрения современных методов организации производства.

АЛ (см рис) состоит из: технологического агрегата 1 – машины, выполняющей одну или несколько операций технологического процесса (кроме накопления и транспортирования деталей); транспортного агрегата 2 – машины, выполняющей межоперационные транспортные операции технологического процесса; накопителя заделов 3 – устройства для приёма, хранения и выдачи межоперационного задела заготовок и полуфабрикатов расположенного между двумя станками или отдельными участками АЛ и устройства управления.

АЛ могут быть операционными (для определённого вида обработки) или комплексными (совокупность АЛ обеспечивающих выполнение всех операций предусмотренных технологическим процессом обработки).

Автоматической цех производящая единица, в которой сосредоточены технологические потоки, состоящие из систем автоматических линий. Например, в автоматическом цехе на ГПЗ-1 работают 77 АЛ, имеющих в своем составе 860 единиц основного технологического оборудования, объединенных в 13 технологических потоков (систем АЛ комплексной обработки).

АЛ классифицируются по основным признакам, влияющим на их организацию и эксплуатацию. Их делят на жёсткие и гибкие, спутниковые и безспутниковые, сквозные и несквозные, ветвящиеся и неветвящиеся.

Жёсткая межоперационная связь характеризуется отсутствием межоперационных заделов. В такой АЛ заготовки загружаются, обрабатываются, разгружаются и передвигаются от станка к станку одновременно или через кратные промежутки времени, и в случае остановки любого агрегата или устройства вся линия останавливается.

Гибкая межоперационная связь обеспечивается наличием межоперационных заделов, размещаемых накопителях или транспортной системе, что создаёт возможность обеспечить при выходе из строя любого станка работу остальных агрегатов до истощения межоперационных заделов.

Спутниковая АЛ – линия, в которой заготовки базируются, обрабатываются и транспортируются в приспособлении – спутнике. Транспортная система в этом случае должна обеспечивать возврат спутников в начало линии.

Когда в составе технологического потока одна или насколько операций реализуются на параллельно работающих станках, АЛ характеризуется ветвящимся транспортным потоком. Примером такого конструктивного решения служат линии для токарной обработки и шлифования внутренних поверхностей колец подшипников.

По степени совмещения обработки с транспортированием заготовки линии подразделяют на стационарные , роторные и цепные ; по компоновке – на линейные, кольцевые, прямоугольные, зигзагообразные, Z-образные; по числу потоков – на однопоточные и многопоточные, с зависимыми и независимыми потоками, с поперечным, продольным и угловым расположением основного технологического оборудования. Большинство компоновок имеют незамкнутую структуру, обеспечивающую удобство доступ для обслуживания и ремонта оборудования.

По виду транспортных систем и способу передачи деталей с одной рабочей позиции на другую АЛ делят на линии со сквозным транспортированием через зону обработки (в основном используют для изготовления корпусных деталей на агрегатных станках), с фронтальным (боковым) транспортированием заготовки (при обработке коленчатых валов, крупных колец и фланцев), с верхним и нижним транспортными потоками (в линиях для изготовления шестерён, мелких и средних колец подшипников, фланцев валов).

По типу встроенного основного технологического оборудования различают АЛ из специальных и агрегатных станков, хотя иногда имеет место компоновка из станков разных типов.

В настоящее время изготавливают АЛ для крупносерийного и массового производства, предназначенные для одновременной или последовательной обработки нескольких наименований однотипных, заранее известных изделий (блоки цилиндров двигателей, корпусов редукторов, насосов и т.д.) как с автоматической, так и с ручной переналадкой. Подобные АЛ или системы АЛ называют автоматическими переналаживаемыми линиями (системами) групповой обработки; они предназначены для одновременной или последовательной обработки группы заранее заданных изделий, однотипных по размерам и технологической обработки.

По виду обрабатываемых деталей различают линии для обработки корпусных деталей и линии для обработки деталей типа тел вращения.

Оборудование А.Л.

В состав АЛ, помимо станков, входят транспортная система и система управления. Транспортная система состоит их устройства для перемещения деталей, загрузочных, поворотных, ориентирующих устройств, приспособлений для установки и закрепления обрабатываемых деталей, устройств для отвода стружки и накопителей заделов.

Устройства для перемещения деталей

В АЛ для перемещения обрабатываемых заготовок с одной рабочей позиции на другую применяют различные транспортные средства: транспортеры, механические руки, лотки, трубы и т.п. Например, для перемещения корпусных деталей, а также для деталей, закрепленных в приспособлениях-спутниках, применяются шаговые транспортеры.

Шаговые транспортеры с собачками (рис. а) получили наибольшее распространение. При работе они совершают периодическое возвратно-поступательное движение. Конструкция такого транспортера представлена на рис. а. На штанге 1, проходящей через весь сблокированный участок АЛ, шарнирно закреплены собачки 3, которые под действием пружины 2 стремятся подняться над уровнем штанги. В момент возврата транспортёра зафиксированные на позициях детали 4 утопляют собачки. Пройдя под деталями, собачки вновь поднимаются и готовы для захвата очередной детали при движении транспортёра вперёд. Преимущество транспортёра с собачками – простота движения и соответствующее ей простота привода от гидро- или пневмоцилиндра.

Шаговые штанговые транспортеры с флажками (рис. б) предназначены для перемещения по направляющей приспособлений-спутников с установленными на них заготовками 3. Перемещение осуществляется штангой 1 (круглого сечения) совершающей возвратно-поступательные движения, на которой секциями закреплены флажки 2. При движении штанги вперёд, в том же направлении одновременно перемещаются заготовки 3 на одну позицию по всей линии. После этого штанга поворачивается и возвращается обратно. Поворот штанги и её осевое перемещение осуществляются двумя гидроцилиндрами.

Грейферные шаговые транспортёры (рис. в) применяются реже. У них штанга 1 совершает поочерёдно два возвратно-поступательных движения в перпендикулярных направлениях с чередованием фаз этих движений. Обрабатываемые заготовки 2 перемещаются жесткими (неповорачивающимися) флажками 3. Конструктивно такие транспортеры обычно сложны и применяются только в тех случаях, когда подход к захватываемым деталям может быть произведен лишь с определённой стороны, причем посадка транспортируемых деталей на позициях такова, что для перемещения с позиции на позицию транспортер должен поднять деталь вверх.

Рейнерные шаговые трансформаторы (рис. г) представляют собой усложненный вид грейферных. Детали 3 перемещаются не флажками, а закреплёнными на штанге 1 захватами 2, которые обычно расположены сверху. Эти транспортеры требуют сложных надстроек над линиями.

Приспособления для установки и закрепления обрабатываемых деталей

Приспособления применяют двух видов: стационарные и приспособления-спутники. Стационарные приспособления предназначены только для выполнения определённой операции обработки детали на одном определённом станке. Эти приспособления выполняют следующие функции: предварительное ориентирование обрабатываемой детали, базирование, окончательное ориентирование и фиксирование её в этом положении, закрепление и раскрепление, направление режущих инструментов (сверл) при обработке.

Читайте также:  Автоматические пробоотборники ключевые характеристики и принцип работы

Приспособления-спутники – служат для закрепления деталей сложной конфигурации, не имеющих удобных поверхностей для надёжного базирования при транспортировании и обработке.

Накопительные устройства

Для уменьшения потерь рабочего времени, связанного с наладкой отдельных станков АЛ, её разделяют на отдельные участки, каждый их которых при остановке других может работать самостоятельно. Чтобы каждый участок линии мог работать независимо от других, перед началом каждого из участков создают межоперационные заделы деталей. Для приема, хранения и выдачи деталей из межоперационных заделов на линиях применяют специальные автоматические накопители. Накопительные устройства делятся на два вида: транзитные (проходные) и тупиковые. В тупиковых схемах накопитель включается в работу только при остановке предыдущего участка линии.

Системы управления АЛ

Существуют централизованные, децентрализованные и смешанные системы управления.

При централизованном управлении (рис. а) агрегатами программа задаётся центральным командным устройством К, которым может быть командоаппарат, распределительный вал, считывающее устройство с лентопротяжным механизмом и др.

Преимуществом такой системы является возможность точного соблюдения порядка выполнения технологических операций по времени, постоянство продолжительности рабочего цикла, упрощённая подсистема управления работой отдельных агрегатов и простота системы в целом.

Недостатком системы централизованного управления является возможность совершения последующих операций без учёта выполнения предыдущих, что может привести к выпуску брака и аварийным поломкам. Системы централизованного управления применяют в основном в сравнительно простых АЛ с непродолжительным циклом.

В системах децентрализованного управления (рис. б) используют путевые переключатели и упоры. Команды передаются последовательно по мере обработки каждого элемента цикла. До тех пор пока предыдущие операции не закончатся, последующие не могут осуществляться. В этом состоит преимущество децентрализованной системы управления. Недостаток – отсутствие контроля выполнения предыдущей операции.

Системы смешанного управления (рис. в) объединяют в себе многие качества систем централизованного и децентрализованного управления. Циклом линии управляет командоаппарат К, однако при этом осуществляется контроль выполнения промежуточных операций. Вал командоаппарата имеет периодическое вращение с получаемыми сигналами.

Источник

Автоматические линии из специального оборудования

Автоматические линии из специального оборудования проектируются для обработки

определенных деталей, при этом заново прорабатываются технологический процесс, конструкция технологического оборудования, транспортирующих устройств, систем управления и т. д. В большинстве случаев такие линии являются уникальными. Так как технологический процесс обработки проектируется, как правило, специально для данной линии, то линия может обеспечить высокую производительность. Недо­статками линий из уникального оборудования являются высокая стоимость и длительные сроки проектирования и освоения, поэтому линии из уникаль­ного оборудования эффективны лишь для отраслей производства с массовым выпуском стабильной во времени продукции, например, подшипников.

Отличительной чертой большинства автоматических линий из специ­ального оборудования является охват не только процессов механической обработки, но и сборки, контроля, смазки и упаковки, а нередко — и опе­рации получения заготовок. Часто в таких линиях применяют новые прогрес­сивные технологические процессы, еще не опробированные в производстве. Это определяет высокие потенциальные возможности производительности, но фактическая производительность, особенно в первые годы эксплуатации, значительно меньше цикловой из-за низкой надежности оборудования в работе, так как часто новые конструктивные и технологические решения нуждаются в длительной доводке.

Комплексные автоматические линии из специального оборудования являются основой для создания более сложных автоматических систем машин — автоматических цехов и заводов. Цехи и заводы-автоматы, которые находят широкое применение, например, в пищевой и химической промыш­ленности, начинают создаваться и в машиностроении, прежде всего в под­шипниковой промышленности.

Весь технологический процесс по изготовлению, контролю и упаковке подшипников полностью автоматизирован. При создании автоматического цеха был внедрен ряд новых технологических процессов: термическая обработка холодом, бесцентровое шлифование отверстий, желобов и беговых дорожек, новая технология сборки и др. Автоматический цех имеет 635 единиц оборудова­ния (310 наименований). Общая площадь цеха составляет около 3000 м 2 .

Применение нового технологического процесса сборки шарикоподшип­ников, внедрение бесцентрового шлифования всех поверхностей и тонкого шлифования беговых дорожек, максимальное соблюдение принципа единства баз, обработка холодом и ряд других новшеств в технологии изгото­вления и контроля позволили получить подшипники выше запроектиро­ванной точности (92-94% выпуска всех подшипников выше нормальной).

Однако длительная эксплуатация цеха показала, что экономические показатели его работы невысоки. Технологические процессы, примененные в цехе, базируются в основном на старых, известных методах обработки, поэтому автоматическое оборудование, несмотря на высокое техническое совершенство, по производительности находится приблизительно на том же уровне, что и оборудование обычных поточных линий. Следовательно, кроме улучшения качества выпускаемых подшипников, источником эконо­мической эффективности линий является лишь сокращение количества рабочих-операторов. Однако оригинальность конструкции большинства автоматов обусловливает невысокую надежность механизмов и устройств линии, что вызывает необходимость иметь значительное количество налад­чиков и уменьшает фактическую экономию фонда заработной платы.

Высокая эффективность автоматических линий и цехов из специального оборудования может быть обеспечена только в том случае, когда новые конструкции машин будут базироваться на новых, прогрессивных техноло­гических процессах, что позволит не только сократить количество обслу­живающих рабочих, но и повысить выпуск продукции. По таким принципам спроектирован второй автоматический цех (АЦ-2) по производству кардан­ных подшипников.

Рис. 15.21. Роторная автоматическая линия сборки химических источников тока

К числу линий из специального оборудования относится большинство автоматических роторных линий. Роторные машины имеют систему инстру­ментов, расположенных по окружности, заготовки обраба­тываются при непрерывном вращении ротора. Детали передаются от одной ма­шины к другой транспортными роторами. Так, на Елецком элементном заводе некоторые сборочные операции переведены на роторные машины и линии. Планировка одной из таких линий показана на рис. 15.21. Элементы пита­телем П1 подаются к транспортному ротору Т1 который передает их в ротор заливки битума Р1. Ротор десятипозиционный безблочный, вращается с ча­стотой 9 об/мин. Емкость резервуара 2,3 л. Уровень битума, подаваемого из питателя П2, поддерживается поплавковым датчиком. Подогреватель битума — погружной подвижный с электрическим герметичным обогревом, дозатор битума в элемент — плунжерный, с отсечкой дозируемого объема. Копир ротора имеет стрелку, реагирующую на изменение хода технологи­ческого процесса (в пустую позицию битум не подается).

Залитый битумом элемент транспортным ротором Т2 передается на ро­тор остывания битума Р2 который имеет 37 позиций. Каждый элемент, посту­пивший на ротор остывания, совершает на нем 2 2 /3 оборота, после чего по­ступает в следующий транспортный ротор Т3, а из него в ротор вставки шайбы и контроля напряжения Р3, который имеет 6 позиций и вращается с частотой 15 об/мин. Блок работает следующим образом. При совмещении захватных органов транспортного ротора Т4 с блок-инструментом шайба накалывается штырем и передается из захватного органа в блок, одновре­менно замеряются электрические характеристики элемента. Затем происхо­дит осадка шайбы через центрирующую воронку в полюс и на уголок эле­мента. Дальнейшим ходом верхнего ползуна, имеющего два боковых выступа, элемент опускается на русло выдачи и транспортным ротором Т5 подается на ротор закатки цинкового полюса Р4, который имеет шесть позиций и вращается с частотой 15 об/мин.

При совмещении захватных органов транспортного ротора с блоком инструмента нижний ползун блока с зажимными собачками идет вверх и принимает в свое гнездо изделие. Хвостовики собачек заходят на непод­вижно установленный в центре ползуна стержень и верхними губками зажи­мают изделие. При дальнейшем ходе ползуна изделие подводится под вра­щающуюся роликовую закатку, закрепленную в шпинделе блока.

Закатанный цинковый полюс транспортным ротором Т6 передается на ротор вставки элемента в футляр Р5. Элемент, поданный транспортным ротором Т7 в верхний приемник блока, ходом верхнего ползуна опускается в центрирующее кольцо, в котором удерживается пластинчатый окружной футляр, подается в нижний приемник и ходом нижнего ползуна вводится в центрирующее кольцо. Дальнейшим ходом верхнего ползуна элемент вставляется в футляр и с помощью боковых выступов ползуна вместе с фут­ляром опускается на русло выдачи. Футляр ротором Т8 передается в ротор закатки футляра Р6. Оформленный элемент поступает на ротор парафинирования. Перед парафинированием изделие поворачивается на 180° и с по­мощью копира, действующего на подвижную часть зажимного органа, погружается в ванну.

От одного рабочего ротора к другому элементы передаются механиз­мами клещевых захватов однотипных транспортных роторов. Готовые эле­менты выдаются восьмипозиционным ротором Т9. Детали оформления (шайбы и футляры) вводятся в процесс роторами-питателями П3 и П4 через соот­ветствующие транспортные роторы.

Роторы смонтированы в станине, состоящей из верхней и нижней плит, связанных между собой цилиндрическими стальными стойками. Нижняя плита закреплена на сварной тумбе, в которой расположен электродвигатель привода движения роторов. Привод движения роторов осуществляется по­средством червячного редуктора. Валы всех рабочих и транспортных рото­ров связаны между собой цилиндрическими зубчатыми колесами. Для регу­лировки взаимного углового расположения рабочие и транспортные роторы связаны между собой цилиндрическими зубчатыми колесами. Колеса выпол­нены в виде двух взаимнорегулируемых венцов, устанавливаемых в заданное угловое положение относительно роторов посредством двух упорных винтов.

Поступательное движение верхних и нижних ползунов блоков линии осуществляется посредством пространственных кулачковых механизмов.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник